DOI QR코드

DOI QR Code

Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method

유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석

  • Yoon, S.C. (Hyundai HYSCO, Advanced Technology R&D team 1) ;
  • Kim, D.H. (Hyundai HYSCO, Advanced Technology R&D team 1)
  • 윤승채 (현대하이스코 기술연구소 선행연구1팀) ;
  • 김도형 (현대하이스코 기술연구소 선행연구1팀)
  • Received : 2013.01.23
  • Accepted : 2013.05.13
  • Published : 2013.06.01

Abstract

Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

Keywords

References

  1. A. Nasser, A. Yadav, P. Pathak, T. Altan, 2010, Determination of the Flow Stress of Five AHSS Sheet Materials(DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests, J. Mater. Process. Technol., Vol. 210, No. 3, pp. 429-436. https://doi.org/10.1016/j.jmatprotec.2009.10.003
  2. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, J. M. Cabrera, 2011, Hot Ductility Behavior of a Low Carbon Advanced High Strength Steel (AHSS) Microalloyed with Boron, Mater. Sci. Eng., A, Vol. 528, No. 13-14, pp. 4468-4474. https://doi.org/10.1016/j.msea.2011.02.040
  3. C. Nikhare, P. D. Hodgson, M. Weiss, 2011, Necking and Fracture of Advanced High Strength Steels, Mater. Sci. Eng., A, Vol. 528, No. 6, pp. 3010-3013. https://doi.org/10.1016/j.msea.2010.12.098
  4. T. Uemori, T. Okada, F. Yoshida, 2000, FE Analysis of Sringback in Hat-Bending with Consideration of Initial Anisotropy and the Bauschinger Effect, Key Eng. Mater. Vol. 177-180, pp. 497-502. https://doi.org/10.4028/www.scientific.net/KEM.177-180.497
  5. D. W. Leu, 1997, A Smplified Approach for Evaluating Bendability and Springback in Plastic Bending of Anisotropic Sheet Metals, J. Mater. Process. Technol., Vol. 66, No. 1-3, pp. 9-17. https://doi.org/10.1016/S0924-0136(96)02453-3
  6. R. M. Cleveland, A. K. Ghosh, 2002, Inelastic Effects on Springback in Metals, Int. J. Plast., Vol. 18, No. 5-6, pp. 769-785. https://doi.org/10.1016/S0749-6419(01)00054-7
  7. M. M. Moshksar, S. Mansorzadeh, 2003, Determination of the Forming Limit Diagram for Al 3105 Sheet, J. Mater. Process. Technol. Vol. 141, No. 1, pp.138-142. https://doi.org/10.1016/S0924-0136(03)00262-0
  8. H. Takuda, T. Yoshii, N. Hatta, 2005, Modelling of Formula for Flow Stress of a Magnesium Alloy AZ31 Sheet at Elevated Temperatures, J. Mater. Process. Technol., Vol. 164-165, pp. 1258-1262. https://doi.org/10.1016/j.jmatprotec.2005.02.034
  9. M. Merklein, J. Lechler, T. Stoehr, 2009, Investigations on the Thermal Behavior of Ultra-High Strength Boron Manganese Steels within Hot Stamping, Int. J. Mater. Form., Vol. 2, No. 1, pp. 259-262. https://doi.org/10.1007/s12289-009-0505-x
  10. M. G. Lee, S. J. Kim, H. N, Han, W. C. Jeong, 2009, Application of Hot Press Forming Process to Manufacture an Automotive Part and its Finite Element Analysis Considering Phase Transformation Plasticity, Int. J. Mech. Sci., Vol. 51, No. 11-12, pp. 888-898. https://doi.org/10.1016/j.ijmecsci.2009.09.030
  11. M. Merklein, J. Lechler, M Geiger, 2006, Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5, CIRP Ann. Manuf. Technol., Vol. 55, No. 1, pp. 229-232. https://doi.org/10.1016/S0007-8506(07)60404-1
  12. R. Kolleck, R. Velt, M. Merklen, J. Lechler, M Geiger, 2009, Investigation on Induction Heating for Hot Stamping of Boron Alloyed Steels, CIRP Ann. Manuf. Technol., Vol. 58, No. 1, pp. 275-278. https://doi.org/10.1016/j.cirp.2009.03.090
  13. H. Liu, X. Lu, X. Jin, H. Dong, J. Shi, 2011, Enhanced Mechanical Properties of a Hot Stamped Advanced High-Strength Steel Treated by Quenching and Partitioning Process, Scr. Mater., Vol. 64, No. 8, pp. 749-752. https://doi.org/10.1016/j.scriptamat.2010.12.037
  14. Y. Chang, Z. Meng, L. Ying, X. Li, N, Ma, P. Hu, 2011, Influence of Hot Press Forming Techniques on Properties of Vehicle High Strength Steels, J. Iron. Steel Res. Int., Vol. 18, No. 5, pp. 59-63.
  15. H. N. Han, C. G. Lee, C. S. Oh, T. H. Lee, S. J. Kim, 2004, A Model for Deformation Behavior and Mechanically Induced Martensitic Transformation of Metastable Austenitic Steel, Acta Mater., Vol. 52, No. 17, pp. 5203-5214. https://doi.org/10.1016/j.actamat.2004.07.031
  16. H. S. Kim, M. H. Seo, S. J. Kim, S. C. Baik, W. J. Bang, H. R. Lee, 2001, Finite Element Analysis and Experimental Investigation on the Thermal Deformation Behavior of Steel Sheets during Press Hardening, J. Kor. Inst. Met. Mater., Vol. 39, No. 9, pp. 1076-1083.
  17. H. H. Bok, M. G. Lee, H. D. Kim, M. B. Moon, 2010, Thermo-mechanical Finite Element Analysis Incorporating the Temperature Dependent Stress-Strain Response of Low Alloy Steel for Practical Application to the Hot Stamped Part, Met. Mater. Int., Vol. 16, No. 2, pp. 185-195. https://doi.org/10.1007/s12540-010-0405-0
  18. A. Turetta, S. Bruschi, A. Ghiotti, 2006, Investigation of 22MnB5 Formability in Hot Stamping Operations, J. Mater. Process. Technol., Vol. 177, No. 1-3, pp. 396-400. https://doi.org/10.1016/j.jmatprotec.2006.04.041
  19. M. Merklen, J. Lechler, 2006, Investigation of the Thermo-mechanical Properties of Hot Stamping Steels, J. Mater. Process. Technol. Vol. 177, No. 1-3, pp. 452-455. https://doi.org/10.1016/j.jmatprotec.2006.03.233
  20. H. H. Bok, M. G. Lee, E. J. Pavlina, F. Barlat, H. D. Kim, 2011, Comparative Study of the Prediction of Microstructure and Mechanical Properties for a Hot-stamped B-pillar Reinforcing Part, Int. J. Mech. Sci. Vol. 53, No. 9, pp. 744-752. https://doi.org/10.1016/j.ijmecsci.2011.06.006
  21. Z. W. Xing, J. Bao, Y. Y. Yang, 2009, Numerical Simulation of Hot Stamping of Quenchable Boron Steel, Mater. Sci. Eng., A, Vol. 499, No. 1-2, pp. 28-31. https://doi.org/10.1016/j.msea.2007.09.102
  22. D. P. Koistinen, R. E. Marburger, 1959, A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels, Acta Metall., Vol. 7, No. 1, pp. 59-60. https://doi.org/10.1016/0001-6160(59)90170-1
  23. S. Phadke, P. Pauskar, R. Shivpuri, 2004, Computational Modeling of Phase Transformations and Mechanical Properties during the Cooling of Hot Rolled Rod, J. Mater. Process. Technol. Vol. 150, No. 1-2, pp. 107-115. https://doi.org/10.1016/j.jmatprotec.2004.01.027
  24. J. B. Leblond, J. Devaux, J. C Devaux, 1989, Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-plastic Phases, Int. J. Plast., Vol. 5, No. 6, pp. 551-572. https://doi.org/10.1016/0749-6419(89)90001-6
  25. J. B. Leblond, 1989, Mathematical Modelling of Transformation Plasticity in Steels II: Coupling with Strain Hardening Phenomena, Int. J. Plast., Vol. 5, No. 6, pp. 573-591. https://doi.org/10.1016/0749-6419(89)90002-8
  26. J. B. Leblond, G. Mottet, J. C. Devaux, 1986, A Theoretical and Numerical Approach to the Plastic Behaviour of Steels during Phase transformations-I. Derivation of General Relations, J. Mech. Phys. Solids, Vol. 34, No. 4, pp. 395-409. https://doi.org/10.1016/0022-5096(86)90009-8
  27. J. B. Leblond, G. Mottet, J. C. Devaux, 1986, A Theoretical and Numerical Approach to the Plastic Behaviour of Steels during Phase Transformations-II. Study of Classical Plasticity for Ideal-plastic Phases, J. Mech. Phys. Solids, Vol. 34, No. 4, pp. 411-432. https://doi.org/10.1016/0022-5096(86)90010-4
  28. J. B. Leblond, J. Devaux, 1984, A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including Effect of Austenite Grain Size, Acta Metall., Vol. 32, No. 1, pp. 137-146. https://doi.org/10.1016/0001-6160(84)90211-6
  29. T. Reti, Z. Fried, I. Felde, 2001, Computer Simulation of Steel Quenching Process using a Multi-phase Transformation Model, Comput. Mater. Sci., Vol. 22, No. 3-4, pp. 261-278. https://doi.org/10.1016/S0927-0256(01)00240-3
  30. T. Reti, G. Bagyinszki, I. Felde, B. Vero, T. Bell, 1999, Prediction of As-quenched Hardness After Rapid Austenitization and Cooling of Surface Hardened Steels, Comput. Mater. Sci., Vol. 15, No. 1, pp. 101-112. https://doi.org/10.1016/S0927-0256(98)00128-1
  31. M. Umeoto, A Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, Y. Higo, 1992, Computer Modeling of Phase Transformation from Work-hardened Austenite, ISIJ Int., Vol. 32, No. 3, pp. 306-315. https://doi.org/10.2355/isijinternational.32.306
  32. H. Z. Zhao, X. Liu, G. Wang, 2006, Progress in Modeling of Phase Transformation Kinetics, J. Iron. Steel Res. Int., Vol. 13, No. 3, pp. 68-73.
  33. N. J. Luiggi, A. E. Betancourt, 1997, Kinetics of Simultaneous Two Phase Precipitation in the Fe-C System, Metall. Mater. Trans. B, Vol 28, No. 1, pp. 161-168. https://doi.org/10.1007/s11663-997-0138-8
  34. S. J. Jone, H. K. D. K. Bhadeshia, 1997, Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products, Acta Metall. Vol. 45, No. 7, pp. 2911-2920.
  35. H. Hoffmann, H. So, H. Steinbeiss, 2007, Design of Hot Stamping Tools with Cooling System, CIRP Ann. Manuf. Technol. Vol. 56, No. 1, pp. 269-272. https://doi.org/10.1016/j.cirp.2007.05.062
  36. D. Lorenz, K. Roll, 2005, Modeling and Analysis of Integrated Hot Forming and Quenching Processes, Advanced Mater. Res., Vol. 6-8, pp. 787-794. https://doi.org/10.4028/www.scientific.net/AMR.6-8.787
  37. Ö. N. Cora, K. Namiki and M. Koç, 2009, Wear Performance Assessment of Alternative Stamping Die Materials Utilizing a Novel Test System, Wear Vol. 267, No. 5-8, pp. 1123-1129. https://doi.org/10.1016/j.wear.2008.12.111

Cited by

  1. Effect of hot-stamping process conditions on the changes in material strength vol.16, pp.4, 2015, https://doi.org/10.1007/s12239-015-0063-9