Min, Byung-Hoon;Choi, Su-Hyun;Kang, Jeong-Sik;Lee, Hyung-Ho;Min, Taeg-Ki
42
Various researches to reduce weight of a vehicle are achieving. One of these researches is tendencious to manufacture the hollow piston rod using friction welding instead of solid one of the vehicle shock absorber. This study deals with the friction welding of SM45C to SM20C-pipe that is used normally in the vehicle shock absorber. The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests of friction weld were studied and so the results were as follows. When the friction time was l.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 837MPa, which is 113% of SM20C's tensile strength and 97% of SM45C's. The optimal welding conditions were n=2,000rpm, $P_1=55MPa$, $P_2=75MPa$, $t_1=1.5sec$, $t_2=2.0sec$ when the total upset length is 1.7mm.