Moon, Byung-In;Kim, Moon-Gyung;Hong, In-Pyo;Kim, Ki-Chang;Lee, Yong-Surk
339
In this paper, we propose a simultaneous multithreading (SMT) architecture that improves instruction throughput by exploiting instruction level parallelism (ILP) and thread level parallelism (TLP). The proposed architecture issues and completes instructions belonging to the same thread in exact program order. The issue and completion policy greatly reduces the design complexity and hardware cost of our architecture, compared with others that employ out-of-order issue and completion. On the other hand, when the instructions belong to different threads, the issue and completion orders for those instructions may not necessarily be identical to the fetch order. The processor issues instructions simultaneously from multiple threads to functional units by exploiting ILP and TLP, and by dynamic resource sharing. That parallel execution notably improves performance and resource utilization with minimal additional hardware cost over the conventional superscalar processors. This paper proposes an SMT architecture with grouping as well as one without grouping. Without grouping, all threads dynamically and flexibly share most resources. On the other hand, in the SMT architecture with grouping, in which resources and threads are divided into several groups for design simplification, resources are shared only among threads belonging to the same group as those resources. Simulation results show that our processors with four and eight threads improve performance by three or more times over the conventional superscalar processor with comparable execution resources and policies, and that reasonable grouping reduces the design complexity of SMT processors with little negative effect on performance.