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Study of an In-order SMT Architecture and Grouping Schemes

Byung In Moon, Moon Gyung Kim, In Pyo Hong, Ki Chang Kim, and Yong Surk Lee

Abstract: In this paper, we propose a simultaneous multithreading (SMT) architecture that im-
proves instruction throughput by exploiting instruction level parallelism (ILP) and thread level
parallelism (TLP). The proposed architecture issues and completes instructions belonging to the
same thread in exact program order. The issue and completion policy greatly reduces the design
complexity and hardware cost of our architecture, compared with others that employ out-of-
order issue and completion. On the other hand, when the instructions belong to different threads,
the issue and completion orders for those instructions may not necessarily be identical to the
fetch order. The processor issues instructions simultaneously from multiple threads to functional
units by exploiting ILP and TLP, and by dynamic resource sharing. That parallel execution nota-
bly improves performance and resource utilization with minimal additional hardware cost over
the conventional superscalar processors.

This paper proposes an SMT architecture with grouping as well as one without grouping.
Without grouping, all threads dynamically and flexibly share most resources. On the other hand,
in the SMT architecture with grouping, in which resources and threads are divided into several
groups for design simplification, resources are shared only among threads belonging to the same
group as those resources. Simulation results show that our processors with four and eight threads
improve performance by three or more times over the conventional superscalar processor with
comparable execution resources and policies, and that reasonable grouping reduces the design
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complexity of SMT processors with little negative effect on performance.
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1. INTRODUCTION

The superscalar processor, the current conventional
microprocessor, has arrived at its performance limit,
while state-of-the-art IC processes allow more than
100 million transistors on a single chip. This is what
directs microprocessor designers to look for the next-
generation microprocessor architecture, and many of
them are now turning their attention to multithreading
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[1]. Multithreading hides latency problems by in-
creasing parallelism through TLP, and thus substan-
tially increases processor utilization and significantly
improves instruction throughput. Also, unlike VLIW
(Very Long Instruction Words) [2], it maintains full
binary compatibility.

Multithreading can be classified into one of three
categories [1]: coarse, fine, and simultaneous. Coarse
multithreading (CMT) supports only one active
thread by allowing instructions from only one thread
in its execution pipe, and hides only long-latency
events such as cache misses. Fine multithreading
(FMT) supports multiple active threads, but issues
instructions from only one thread in a cycle, and can-
not remove horizontal waste [3]. SMT issues and
executes instructions from multiple threads each cy-
cle. Among those three categories, SMT outperforms
others and is considered as a next-generation architec-
ture. It has no practical processor design due to its
great complexity. However, in the near future, proces-
sor chips that adopt the SMT architecture are ex-
pected to appear on the market. Some companies are
known to have adopted this architecture for their
next-generation processors [4].

A number of other architectures have been pro-
posed that execute instructions from multiple threads
each cycle. Tullsen, et al., [S] propose an architecture
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for SMT. This architecture is based on register renam-
ing [6-7] and out-of-order issue and completion. Reg-
ister renaming requires additional registers, which
result in a larger register file and a slow down in reg-
ister file accesses. In addition, the register renaming
logic adds an additional stage for register renaming.
Moreover, in some instruction set architectures (ISAs),
it is almost impossible to support register renaming
due to specific architectural features. For example, in
the ARM architecture, register renaming is very diffi-
cult to implement, since it supports conditional exe-
cution for most of its instructions. Also to be noted is
the fact that out-of-order completion requires a com-
plicated recovery and restart mechanism for branch
misprediction and exception [7]. Such complicated
recovery and restart mechanism increases the design
complexity of out-of-order processors and causes
large penalties in the case of branch misprediction
and exception. In combination with the vast complex-
ity of the SMT architecture, these difficulties make
the out-of-order SMT impractical even in the near
future.

Hirata, et al., [8] present an architecture for a mul-
tithreaded superscalar processor. In their architecture,
threads do not share instruction queues nor decode
slots. Instead, each thread is provided with its own
instruction queue and decode slot. Such resource par-
titioning among threads prevents the instruction
queues and decode slots from being shared dynami-
cally. As a result, instruction queues and decode slots
are wasted while some threads are unable to fetch and
decode instructions. The waste of those resources is
particularly more serious when the number of avail-
able threads is smaller than that of threads supported
by the hardware. Moreover, they do not describe a
recovery and restart mechanism for branch mispredic-
tion and exception, despite the fact that such a de-
scription is necessary due to the out-of-order execu-
tion of their architecture.

Several conventional superscalar architectures
support out-of-order execution for the purpose of in-
creasing ILP. However, in SMT processors, out-of-
order issue and completion policy is unnecessary,
because TLP between multiple threads in the SMT
architecture compensates for the lack of ILP of each
single thread. Thus, we propose an in-order SMT ar-
chitecture that is derived from the conventional in-
order superscalar architecture. Our simple in-order
issue and completion policy reduces design complex-
ity and hardware cost to a significant extent compared
with out-of-order SMT. Furthermore, we present
grouping schemes. Without grouping, all threads dy-
namically and flexibly share the majority of resources.
On the other hand, in the SMT architecture with
grouping, in which resources and threads are divided
into several groups in order to reduce design com-
plexity, resources are shared only among threads be-

longing to the same group as those resources.

The rest of the paper is organized as follows. Sect.
2 describes in detail the SMT architecture that we
propose as well as the grouping schemes to reduce
design complexity and the changes in our SMT archi-
tecture from the conventional superscalar architecture.
Sect. 3 presents the simulation environment that we
constructed, and evaluates the performance of our
SMT architecture. We discuss related work in Sect. 4
and summarize our results and conclude the paper in
Sect. 5.

2. PROCESSOR ARCHITECTURE

In Sect. 2.1 we propose an SMT architecture in
which all threads thoroughly share execution re-
sources. Also, as a method to reduce the design com-
plexity of our SMT architecture, in Sect. 2.2 we pre-
sent the grouping schemes that divide resources and
threads into several groups.

2.1. Processor architecture without grouping

Our processor is derived from the conventional su-
perscalar architecture, and is constructed through ap-
plying small changes to the conventional superscal-
processor. As shown in Fig. 1 (the architecture of a
four-thread SMT processor), the processor consists of
an instruction cache, an instruction memory manage-
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Fig. 1. Overall architecture of the four-thread SMT
processor without grouping.
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Fig. 2. Instruction fetch structure of the SMT archi-
tecture without grouping.

ment unit (IMMU), a fetch unit (containing a branch
target buffer (BTB), branch history buffers (BHBs),
program counters (PCs) and a thread selector), an
instruction fetch queue (IFQ), a decode unit, a regis-
ter file, a scoreboard array, an issue unit (containing
an instruction issue queue (I1Q)), functional units (in-
cluding no floating-point unit), a data cache, and a
data memory management unit (DMMU). Most re-
sources in this processor are dynamically shared
among threads with the exception of a few resources,
as described below.

The fetch unit fetches instructions from multiple
threads each cycle. If the fetch width is N instructions
and the fetch unit partitions the width among M
threads each cycle, the fetch unit fetches N instruc-
tions (N/M instructions per thread) from M threads
selected from T threads by the thread selector every
cycle. The thread selector picks up M threads by a
specific fetch priority policy. In this structure, the
instruction cache is non-blocking, since, during
misses for some threads, the processor continues
fetching instructions from other threads. The instruc-
tion cache consists of M banks [9] and M ports with
the purpose of fetching instructions simultaneously
from M threads. The instruction TLB (ITLB) also has
M ports in order to translate M virtual addresses from
M threads to M physical addresses at the same time.
Likewise, the BTB also has M ports, M branch histo-
ries from which are saved in the M BHBs related to
the selected threads—T separate BHBs exist one per
thread. If the number of available threads is smaller
than M or bank conflicts occur, then the number of
instructions to be fetched becomes less than N in-
structions. In addition, the number of PCs for fetching
instructions must be equal to that of simultaneously
supported threads (T) (one PC per thread). Fig. 2
shows the instruction fetch structure.

Fetched instructions are stored in the tail-pointed
locations of the IFQ, as shown in Fig. 3, in which the
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Fig. 4. Instruction issue queue compressing.

IFQ has K entries. The decode unit decodes instruc-
tions in the fetch order from the head-pointed loca-
tions of the IFQ. During decoding, the decode unit
determines which type of functional unit will execute
the decoded instruction. At the same time, the decode
unit identifies the addresses of source and destination
registers, immediate data, and the operation of each
instruction. Finally, those decoded instructions are
stored in order in the TIQ.

The issue unit selects instructions from the I1Q by
a specific issue priority policy and examines their
data dependencies and resource conflicts. Then, in-
structions without data dependencies or resource con-
flicts are issued to their assigned functional units. The
issue unit issues in order instructions belonging to the
same thread. However, the issue order of instructions
from different threads may not be the same as the
fetch order. Besides, the issue unit supports per-thread
instruction flush. Those two factors cause empty (in-
valid) entries to come into being between the head-
pointed entry and the tail-pointed entry. Therefore,
the IIQ compressing shown in Fig. 4, in which IIQ
has L entries, is necessary and performed simultane-
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ously with the instruction issue. The scoreboard array,
which has as many entries as registers in the register
file, traces the recent update of each register, and pro-
vides the issue unit with the information about data
dependency and bypassing of each register. On the
other hand, the issue unit updates the scoreboard en-
tries corresponding to the destination registers of is-
sued instructions.

Issued instructions obtain their operands through
bypassing, or read the operands from the register file
containing the register sets for all of the threads. Then,
they are executed in their assigned functional units.
The architecture provides three types of functional
units: arithmetic logic unit (ALU), multiply unit, and
load/store unit (LSU). Fig. 5 shows the operations of
the functional units. As shown in Fig. 5, the func-
tional units execute instructions issued to them, and
write the results to the register file. The processor
completes instructions in order, and thus, the writes to
the register file are performed in order, for each
thread.

The SMT architecture improves instruction
throughput by exploiting TLP as well as ILP and con-
verting TLP to ILP, so that the TLP of the SMT archi-
tecture can compensate for the ILP loss caused by
employing in-order execution rather than out-of-order
execution. For example, if the number of supported
threads and the instruction issue width are 8 threads
and 4 instructions, respectively, the ILP of 0.5 instruc-
tions per cycle (IPC) per thread is sufficient to fully
utilize the instruction issue width of 4 instructions.
For this reason, it is unnecessary to employ out-of-
order execution in the SMT architecture. Actually, the
simulation results in Sect. 3 show that despite in-
order execution, IPC is almost the same as instruction
issue width in case that the number of supported
threads is greater than the issue width.

In-order execution in this paper reduces design
complexity and hardware cost as compared with out-
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Fig. 5. Operations of functional units in the stages R,
E, and M.

of-order execution. In this architecture, recovering the
in-order state of the processor from mispredicted
branches and exceptions is very simple thanks to its
in-order completion feature, and is performed only by
flushing the instructions of the corresponding thread
that follow the mispredicted branch or excepted in-
struction. Thus, in our SMT architecture, the addi-
tional complexity for recovering from branch mispre-
diction and exception is only a per-thread instruction
flush mechanism compared with the conventional
superscalar architecture. On the other hand, the SMT
architecture employing out-of-order execution neces-
sitates additional registers for renaming that increase
the register file area and slow down register file ac-
cesses, an extra pipeline stage for renaming, which
increases branch misprediction penalty, and a register
renaming logic. Also, it needs storage and logic units
to maintain in-order, lookahead and architectural
states [7]. Moreover, the complex mechanism for re-
covering and restarting from branch misprediction
and exception greatly increases the design complexity
of the SMT architecture employing out-of-order exe-
cution.

2.2. Grouping

By sharing the majority of hardware resources
among all threads, an SMT processor notably im-
proves resource utilization and performance. In that
case, however, the design complexity of the SMT
processor becomes too large. In this subsection,
grouping schemes are proposed as methods to de-
crease the design complexity of our SMT architecture.
Figs. 6 and 7 show the structures that read register
operands and send them to ALUs. In Fig. 7, the read
ports, ALUs and threads are divided into two groups,
but not in Fig. 6. By grouping, the structure multi-
plexing register addresses and ALU operands in Fig.
7 is simpler than that in Fig. 6.

Table 1. Three grouping schemes and grouped re-
sources in each scheme.

Grouping

Grouped resources
scheme

Instruction cache ports.
Instruction TLB ports.
BTB ports.

GRP 1

Instruction fetch queues.
Decode slots.
Instruction issue queues.

GRP 2

Instruction issue control logic.

Read and write ports of the register file.
Read and write ports of the scoreboard
arrays.
Functional units.
Data cache ports.

GRP 3

Data TLB ports.
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Fig. 6. Register reads without grouping.

The above grouping can be optionally applied to
all hardware resources, and we present three grouping
schemes: GRP 1, GRP 2 and GRP 3, depending on
the types of grouped resources, as shown in Table 1.
The three schemes can be applied independently of
each other, since each scheme is applied to its own
exclusive hardwa.e resources as shown in Fig. 8. By
grouping, the resources of each group are shared only
among the threads belonging to the same group. For
example, if GRP 1 divides resources for the instruc-
tion fetch including instruction cache ports, instruc-
tion TLB ports and BTB ports into two groups (the
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Fig. 8. Three grouping schemes in the in-order SMT
architecture.
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Fig. 7. Simplification of register reads by grouping.

tions using only the fetch resources of the same group.
Grouping threads and related resources into two
groups by GRP 1 is shown in the instruction fetch
structure of Fig. 9. A similar grouping mechanism is
applied to GRP 2 and GRP 3.

Hardware design complexity is reduced by the
above grouping schemes as described below.

¢ By GRP 1, the thread selection logic for fetch is
simplified.

e By GRP 1, virtual address paths to the ITLB and
BTB are simplified.

e By GRP 1, branch prediction history paths from
the BTB to the BHB are simplified.

® By GRP 1, the ITLB part can be implemented as
small one-read-port TLBs (one TLB per group), in-
stead of one large multi-read-port TLB.

¢ By GRP 1, the instruction cache part can be im-
plemented as small one-read-port caches (one cache
per group), instead of one large multi-read-port cache.

e By GRP 1, the BTB part can be implemented as
small one-read-port BTBs (one BTB per group), in-
stead of one large multi-read-port BTB.

e By applying GRP 1 and GRP 2 in combination,
instruction paths from the instruction cache to the
IFQ are simplified.

¢ By GRP 2, management of the IFQ and IIQ is
simplified.

® By GRP 3, the register file part is implemented
as small register files (with fewer ports), instead of
one large register file.

e By GRP 3, the instruction issue control logic
(e.g., data dependency check, thread selection for
issue, and functional unit assignment) is greatly sim-
plified.

® By GRP 3, register address paths to the register
file are simplified.

e By GRP 3, register data paths from and to the
register file are simplified.

e By GRP 3, data bypassing logic is simplified.
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Fig. 9. Instruction fetch structure with the grouping
scheme GRP 1.

o By GRP 3, the data TLB (DTLB) part can be
implemented as small one-read-port TLBs (one TLB
per group), instead of one large multi-read-port TLB.

e By GRP 3, the data cache part can be imple-
mented as small one-port caches (one cache per
group), instead of one large multi-port cache.

2. 3. Pipeline structure

The pipeline structure shown in Fig. 10 is applied
to our SMT architecture regardless of grouping, and
is summarized below.

® In the select (S) stage, the thread selector picks
up threads from which instructions are to be fetched
in the next cycle.

e In the fetch (F) stage, instructions are fetched
from threads selected in the select stage and stored in
the IFQ.

o In the decode (D) stage, instructions are decoded,

and then the decoded instructions are stored in the 11Q.

o In the issue (I) stage, instructions in the IIQ
without data dependencies or resource conflicts are
issued to the functional units.

o In the read (R) stage, instruction operands are
read from the register file or bypassed.

o In the execute (E) stage, ALU instructions are
executed in the ALUs, and the multiply instructions
perform multiplication. In the case of load/store in-
structions, memory addresses are calculated.

e In the memory (M) stage, the multiply instruc-
tions perform accumulation, and load/store instruc-
tions access the data cache. Also, branch mispredic-
tion and exception checks are carried out. ALU in-
structions do not carry out any operation in this stage.

e In the write (W) stage, execution results are
written back to the register file.

In addition, there is no instruction stall from the R
stage to the W stage, because the issue unit arbitrates

instruction issues to prevent those stages from stalling.

Select (S)

Fetch thread selection

Instruction fetch

Fetch (F)

Decode (D) | Instruction decode

Issue (I) Instruction issue
Read (R) Operand read
ALU: execution, Multiply: multiplication,
Execute (E) Load/store: memory address calculation

No stall
Multiply: accumulation, Load/store: memory access,
Memory (M) Branch and exception checks, ALU: no operation

Write back results to the register file

Write (W)

Fig. 10. Pipeline structure of the SMT processor.

2.4. Changes from superscalar architecture

While the SMT architecture has excellent potential
to increase processor performance, it can add substan-
tial complexity to the design. First, throughout the
pipeline stages, each instruction is accompanied by its
thread identifier. The following changes are made to
support multiple threads simultaneously.

e An instruction cache that consists of several
banks and is non-blocking.

e Multiple PCs and a thread selector that picks up
threads from which instructions are to be fetched.

e A fetch priority policy and an issue priority pol-
icy.

o A thread id with each BTB entry and a separate
branch history buffer for each thread for predicting
branches with higher accuracy.

e Multiple IFQs and IIQs if the grouping scheme
GRP 2 is applied.

o [IQ compressing.

e Per-thread instruction dependency check.

e Per-thread branch misprediction check.

e Per-thread exception mechanism.

o Per-thread instruction flush mechanism.

e The register file T (the number of threads) times
larger than that of the conventional superscalar proc-
essor.

e The scoreboard array T times larger than that of the con-
ventional superscalar processor.

3. SIMULATION AND RESULTS

Our method of performance evaluation is based on
execution-driven simulation. An execution-driven,
cycle-based simulator written in C language is im-
plemented to model in detail our SMT architecture.
The simulator adopts the ARM architecture as its ISA
and has a variety of configuration parameters in order
to simulate SMT processors with various organiza-
tions as shown in Table 2. The fetch width and decode
width are the same as the issue width. and thus not
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Table 2. Configuration parameters.

listed in Table 2. The bank conflicts [9] of the instruc-

Configuration pa-

Parameter description

tion and data caches are ignored in the simulation.
Thus, the parameters for the numbers of the banks of
the caches are meaningless in the simulator, and not

listed in Table 2. The parameters FETCH_PRI and

rameter
GRP1_NUM Number of GRP 1 groups
GRP2_NUM Number of GRP 2 groups
GRP3_NUM Number of GRP 3 groups

ISSUE_PRI of Table 2 select fetch and issue priority
policies respectively, and the selectable policies are

THREAD_NUM

Number of supported threads

summarized in Table 3.

ISSUE_WIDTH

Instruction issue width

Our workload is from the SPEC CPU2000 bench-

IFQ_SIZE Number of TFQ entries mark suite [10] and the ADS (ARM Developer Suite)
1IQ_SIZE Number of I1IQ entries [11]. Table 4 shows the benchmark programs that we
ALUF_NUM Number of ALUs choose from those suites, as well as their brief descrip-
MULF_NUM Number of multiply units tions. Each thread of the simulator executes the six
LSUF_NUM Number of LSUs benchmark programs in Table 4. We adjust the execu-
BTB_SIZE Number of BTB entries tion orders of programs differently depending on
ITLB_SIZE Number of ITLB entries threads, for the purpose of preventing abnormal inter-
DTLB_SIZE Number of DTLB entries thread cache interference, which occurs while multiple
ICP NUM Number of instruction cache @eads execute the same program mmu]tanepusly. In
- ports this way, we model a parallel workload achieved by
IC SIZE Instruction cache size multiprogramming rather than parallel processing.
ICWAY_NUM Instruction cache associativity Thus, performance results are not affected by synchro-
Block size of the instruction nization delays and inefficient parallelization.
ICBLK_SIZE cache Fig. 11 shows the flow of simulation and perform-
DCP NUM Number of data cache ports ance evaluation. First, we ensure that the simulator
DC SIZE Data cache size has the proper organiz'a_tion by adjusting configuration
DCWA_Y NUM Data cache associativity parameters and compiling the source of the simulator
DCBLK SIZE | Block size of the data cache written in C language. And we obfain ARM executa-
= Number of cycles spent refilling ble binary files of ELF format. by compl'lmg each
CFILL_CYC or evicting one cache block benchmark program with the built-in compiler of the
FETCH PRI Fetch oriori i ADS. Then, the simulator performs simulations using
ISSUE PRI I:stl(l:e II))rrllc());ltt}}: g ((:lilcf}}rl those executable files. Finally, we evaluate the per-

formance of SMT processors using the performance

Table 3. Fetch and issue priority policies.

data that the simulator outputs at the end of simula-

Type of priority . . o
policy Priority policy Description
RR Select threads using a round-robin priority scheme
Give highest priority to those threads with the fewest instructions in
ICOUNT_IFQ the IFQ(s)
Give highest priority to those threads with the fewest instructions in
ICOUNT.Q | the IFQ(s) and TIQ(s)
Give highest priority to those threads with the fewest instructions in
Fetch ICOUNT_ALL the TFQ(s), IIQ(s) and functional units
ICOUNT_BR Give highest priority to those threads with the fewest unresolved
branches
ICOUNT MISS Give .hlghest priority to those threads that have the fewest out-
standing data cache misses
TIQOL Give lowest priority to those threads with instructions closest to the
head(s) of the IIQ(s)
OLDEST Give highest priority to those instructions closest to the head(s) of
the TIQ(s)
Issue ICNT_FU Give highegt pn'or_ity to instruc.tions be_longing to those threads with
the fewest instructions in functional units
ICNT_MISS Give highest priority to i'nstructions belopging to those threads that
have the fewest outstanding data cache misses
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Table 4. Benchmark programs used to evaluate the performance of SMT processors with various configurations.

Benchmark suite [ Program Program description
parser Syntactic parser of English, based on link grammar
twolf TimberWolfSC placement and global routing package
SPEC CPU2000 vortex Single-user object-oriented database transaction benchmark
mcf frogram designed for the solution of single-depot vehicle scheduling prob-
ems
ADS sorts Benchmark performing and comparing insertion, shell and quick sorts
Dhrystone | Benchmark used to measure the integer processing performance of a system

tions. In performance evaluation, IPC is used as a
performance criterion.

Simulations are carried out for evaluating the per-
formance of the SMT processors without grouping.
Figs. 12 and 13 are the results of those simulations
with configuration parameter values of Tables 5 and 6,
respectively. As shown in Fig. 12, as long as the
number of threads is less than or equal to four, the
performance of four-issue SMT processors remarka-
bly improves as the number of threads increases. Plus,
Fig. 13 shows that increasing the number of threads
highly improves the performance of eight-issue SMT
processors as long as the number of threads is less
than or equal to eight. Putting the results of Figs. 12
and 13 together, we discover the fact that SMT proc-
essors are cost-effective when the number of threads
is equal to that of instructions that can be issued in
one cycle. The poor performance of single-threaded

Initialize

ARM executable
binary files

Program load

Simulation start|

Write (W)

Memory (M)

Execute (E)

Read (R)

1 cycle
Issue (I)

Decode (D)

Fetch (F)

Select (S)

. Simulation end

Performance
data output

Performance
evaluation

Fig. 11. Flow of simulation and performance evalua-
tion.

(superscalar) processors results from the low ILP fea-
ture specific to the ARM ISA. However, SMT proces-
sors with four and eight threads improve performance
by three and five times, respectively, over single-
threaded processors. This means that processors
adopting ISAs having the feature of low ILP can
benefit more from multiple threads and that the ARM
is one of those ISAs. In addition, as shown in Figs. 12
and 13, the performance of SMT processors with
eight threads and eight-way caches is better than with
sixteen threads and four-way caches. This signifies
that increasing the number of cache ways from four to

ISSUE_WIDTH =4
g [CWAY_NUM =4
DCWAY_NUM =4

4 ICWAY_NUM = THREAD_NUM
%" J DCWAY_NUM = THREAD_NUM

3 2.78 2.78

Performance (IPC)
[3e)
|

7 3 B 3

(Superlscalar)
Number of supported threads
Fig. 12. Performance comparison of four-issue proc-
essors with parameter values given in Table 5.

ISSUE_WIDTH =8

Mg ICWAY_NUM = 4
DCWAY_NUM =4

€ ICWAY_NUM = THREAD_NUM
DCWAY_NUM = THREAD_NUM

Performance (IPC)

g 16

1
(Superscalar)

Number of supported threads
Fig. 13. Performance comparison of eight-issue proc-
essors with parameter values given in Table 6.
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Table 5. Values of configuration parameters of four-
issue processors (for the performance compari-
son in Fig. 12).

Configuration Parameter value
parameter
ISSUE_WIDTH 4
IFQ_SIZE 32
11Q_SIZE 32
ALUF_NUM 4
MULF_NUM Equal to GRP3_NUM
LSUF_NUM 2
BTB_SIZE 64
ITLB_SIZE 64
DTLB_SIZE 64
1 for superscalar
ICP_NUM 2 for 2-thread or 4-thread SMT
4 for 8-thread or 16-thread SMT
IC_SIZE 64 Kbytes
ICBLK_SIZE 32 bytes
DCP_NUM 2
DC_SIZE 64 Kbytes
DCBLK_SIZE 32 bytes
CFILL_CYC 5
FETCH_PRI RR
ISSUE_PRI OLDEST

Table 6. Values of configuration parameters of eight-
issue processors (for the performance compari-
son in Fig. 13).

Configuration Parameter value
parameter
ISSUE_WIDTH 8
IFQ_SIZE 64
HQ_SIZE 64
ALUF_NUM 8
- MULF_NUM Equal to GRP3_NUM
LSUF NUM 4
BTB_SIZE 64
ITLB_SIZE 64
DTLB_SIZE 64
1 for superscalar
2 for 2-thread or 4-thread SMT
ICP_NUM 4 for 8-thread or 16-thread
SMT
IC_SIZE 64 Kbytes
ICBLK_SIZE 32 bytes
DCP_NUM 4
DC_SIZE 64 Kbytes
DCBLK_SIZE 32 bytes
CFILL_CYC 5
FETCH_PRI RR
ISSUE_PRI OLDEST

s ISSUE_WIDTH =8
ICWAY_NUM =4
61 DCWAY_NUM =4

“{ Instruction cache

0.8+

Cache miss rate (%)

0.6
0.4+

02-{ 0.

(Superlscalar) 24‘ | 4 . 8 16

Number of supported threads

Fig. 14. Cache miss rates of four-way set-associative
instruction and data caches (for 1, 2, 4, 8 and

16 threads).

eight improves performance to a greater extent than
increasing that of threads from eight to sixteen. This
is because as the number of threads increases over
that of cache ways, the number of inter-thread con-
flict cache misses rapidly rises, and as a result, miss
rates highly increase, as shown in Fig. 14.

Table 7 shows the performance comparison of vari-
ous fetch and issue priority policies through the
results of simulations that are performed using eight-
thread, eight-issue SMT processors with parameter
values of Table 6 and eight-way caches. The
ICOUNT_Q outperforms the other fetch priority poli-
cies and increases performance by 4% compared with
the RR. Furthermore, the policy ICOUNT_Q is very
simple, considering it can be implemented merely by
counting the instructions of each thread in the IFQ
and IIQ. Thus, the ICOUNT_Q is a highly recom-
mended policy for our SMT architecture. All the three
issue priority policies show almost identical perform-
ance.

The grouping in Sect. 2.2 simplifies the design of
the SMT processors, but decreases performance. Ta-
ble 8 shows grouping effects on the performance of
eight-thread, eight-issue SMT processors with pa-
rameter values of Table 6 and eight-way caches. Ap-
plying the GRP 1 grouping scheme simplifies the de-
sign of the logic related to the instruction fetch only
with trivial (less than 1%) performance decrease
compared with the SMT processor without grouping,
as shown in Table 8. On the other hand, the perform-
ance decrease due to the GRP 3 grouping scheme is
relatively large. Thus, a large number of GRP 1
groups and a small number of GRP 3 groups are rec-
ommended. Also, moderate grouping is, on the whole,
highly recommended, since it reduces the design
complexity of the SMT processors with little negative
effect on performance.
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Table 7. Performance comparison of fetch and issue priority policies.

Type of priority policy Priority policy Performance (IPC)
RR 4.86
ICOUNT_IFQ 5.02
Fetch (FETCH_PRI) ICOUNT_Q 5.07
(ISSUE_PRI = OLD- ICOUNT_ALL 5.06
EST) ICOUNT_BR 4.92
ICOUNT_MISS 4.94
IIQOL 5.03
fsue 1SSUF_pRI) | OLDEST 436

(FETCH_PRI = RR) = .

ICNT_MISS 4.85

Table 8. Grouping effects on the performance of eight-thread, eight-issue SMT processors.

Number of Number of Number of Performance
GRP 1 groups | GRP 2 groups | GRP 3 groups (IPC)
1 1 1 4.86
2 1 1 4.84
1 2 1 4,80
1 1 2 4.77
4 1 1 4.83
1 4 1 4,71
1 1 4 4.57
2 2 2 4.76
4 2 2 4,74
2 4 2 4.67
2 2 4 4.52
4 4 2 4.65
2 4 4 447
4 2 4 4.50
4 4 4 4.46
4. RELATED WORK

Tullsen et al. [3] present an idealized SMT archi-
tecture model to evaluate the performance potential of
simultaneous multi-thread instruction issue. Through
use of a multiprogrammed workload of scientific ap-
plications, the study demonstrates that superscalar
and fine-grain multithreaded processors lack suffi-
cient ILP to fully utilize functional units in a wide-
issue processor. By allowing multiple threads to issue
each cycle, instruction throughput increased greatly. A
later study [5] presents an implementable SMT mi-
croarchitecture. This study evaluates several fetch and
issue policies for improving the performance of an
SMT processor and achieves a 2.5 speedup over a
single-threaded superscalar architecture. However,
this architecture adopts out-of-order execution, and
thus its design complexity is very high compared with
our architecture. Also, our grouping schemes pro-
posed as methods to reduce the design complexity of
the SMT architecture are not investigated in this study.

Hirata et al. [8], Yamamoto and Nemirovsky [12],
and Prasadh and Wu [13] propose architectures that
dynamically pack instructions from different threads.
In all three architectures, however, the early stages of
the pipeline are partitioned. Hirata’s architecture in-
cludes a separate instruction queue and a fetch/decode
unit for each thread. When an instruction is ready, the
decode unit must arbitrate for an available functional
unit. If there are no available functional units, then
the ready instruction is placed in a standby station.
This architecture achieves a 3.5 speedup over a sin-
gle-threaded superscalar architecture when using
eight parallel threads for a ray-tracing application.
Yamamoto and Nemirovsky propose a similar archi-
tecture, where each thread has its own 8-entry dis-
patch window and fetch unit. Ready instructions
compete for available functional units. Prasadh and
Wu also require per-thread register sets and instruc-
tion fetch units. Although these three architectures
permit flexible sharing of processor functional units,
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they require replicated fetch/decode units and parti-
tion the dispatch window/instruction queue. A parti-
tioned instruction queue in these architectures can
lead to under-utilization of this resource. On the other
hand, our SMT architecture shares the instruction
queue between all threads, or shares a partitioned
instruction queue between the threads belonging to
the same group as the queue by the GRP 2 grouping
scheme, so that our paper investigates the trade-offs
of resource sharing. Moreover, the instruction queues
in these three architectures are fed by the separate
fetch units, so that more instruction cache ports are
required than in our SMT architecture using a single
fetch unit.

The above architectures did not consider the
grouping schemes and did not investigate their effects
on the performance of the SMT architecture. By shar-
ing most of the hardware resources among all threads,
an SMT processor notably improves resource utiliza-
tion and performance. In that case, however, the de-
sign complexity of the SMT processor becomes too
large. Thus, our grouping schemes must be investi-
gated when designing practical SMT processors. Ad-
ditionally, because these architectures focus on in-
creasing performance, they support out-of-order exe-
cution for each thread. However, in-order execution
for each thread in our architecture shows sufficient
performance compared with these out-of-order SMT
architectures, as shown in the simulation results.

5. CONCLUSIONS

In this paper, we have proposed an SMT architec-
ture that issues and completes instructions in order,
for each thread. Our in-order issue and completion
architecture reduces design complexity and hardware
cost while maintaining competitive or higher per-
formance compared with the previous SMT architec-
tures using out-of-order execution. It improves proc-
essor utilization by dynamic resource sharing among
threads. Moreover, our architecture is derived from
applying small changes to the conventional in-order
superscalar microprocessors. The simulation results
show that our processors with four and eight threads
improve performance by three or more times over the
conventional superscalar processor with comparable
resources and policies, and that moderate grouping
reduces the design complexity of the SMT processors
with little negative effect on performance. Besides,
the number of cache ways equal to or over that of
supported threads is recommended in the SMT archi-
tecture.
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