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A Nonlinear Programming Approach to Biaffine Matrix Inequality
Problems in Multiobjective and Structured Controls

Joon Hwa Lee, Kwan Ho Lee, and Wook Hyun Kwon

Abstract: In this paper, a new nonlinear programming approach is suggested to solve biaffine
matrix inequality (BMI) problems in multiobjective and structured controls. It is shown that
these BMI problems are reduced to nonlinear minimization problems. An algorithm that is easily
implemented with existing convex optimization codes is presented for the nonlinear minimiza-
tion problem. The efficiency of the proposed algorithm is illustrated by numerical examples.
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1. INTRODUCTON

Multiobjective control problems have received
considerable attention because of their practical im-
portance, as noted in [3, 13, 18, 24]. Structured con-
trol problems, in which the structure of the control is
specified a priori, have also been investigated by
many researchers [9, 15, 17, 23]. It is known that
multiobjective and structured control problems can-
not be represented by linear matrix inequality (LMI)
problems. In most cases they are represented by biaf-
fine matrix inequality (BMI) problems. BMI prob-
lems are nonconvex and most of them are known to
be NP-hard [4]. To date, there have been many ap-
proaches for solving these problems.

In [3, 18, 24], common Lyapunov functions were
used to obtain multiobjective controls. In [8, 29], it-
erative LMI (ILMI) methods were proposed for mul-
tiobjective controls. In [13], a finite dimensional Q-
parameterization was used to compute multiobjective
H,/H.. control, in which very large LMI’s appear.
However, because these LMI methods were made
under performance approximations or conservative
assumptions, such methods may only produce ap-
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proximate solutions or solutions for limited cases.
Recently, multiple Lyapunov functions were intro-
duced to reduce some conservatism in [31]. However,
the method still has some difficulties in dealing with
multiobjective control problems. Moreover, it is
noted that these approaches cannot be applied to
structured control problems such as H,/H.. PID con-
trol [9].

Most multiobjective and structured controls can be
obtained by BMI methods rather than LMI methods.
In {12, 16, 30], branch and bound algorithms were
proposed for the general BMI problem. In [19, 27],
randomized algorithms were proposed for BMI prob-
lems in robust control. In [9], a genetic algorithm was
proposed for H»/H.. PID control. However, these
global search algorithms for BMI problems may be
inefficient for problems of large size.

Recently, nonlinear programming approaches have
been proposed for solving BMI problems in robust
control [1, 2] and fixed order control [11]. It is noted
that these existing nonmlinear programming ap-
proaches have been derived by the elimination lemma
[6]. However, the elimination lemma cannot be util-
ized to solve multiobjective and structured control
problems, which are described as follows:

Find a structured © satisfying

A +BOC, +cle"B <0 (1)

foralli=1,2,...,m.

The existing nonlinear programming methods there-
fore cannot be used to obtain multiobjective and
structured controls.

In this paper, a new nonlinear programming ap-
proach is suggested by introducing a condition that is
equivalent to (1). Using the derived condition, it is
shown that BMI problems in multiobjective and
structured controls can be reduced to nonlinear
minimization problems. An explicit algorithm for
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solving the nonlinear minimization problem is also
proposed. The algorithm is easily implemented using
convex optimization codes [25]. Numerical examples
show that the proposed algorithm is computationally
efficient.

This paper is organized as follows. In Section 2, a
nonlinear minimization problem for multiobjective
and structured controls is presented. An algorithm for
solving the nonlinear minimization problem is pre-
sented in Section 3. In Section 4, numerical examples
are given. Finally, conclusions are presented in Sec-
tion 5.

2. MULTIOBJECTIVE AND STRUCTURED
CONTROL PROBLEMS
Consider a plant
X=Ax+ B, w+ Bu,
z=C,x+D,w+D,u, 2)
y=C Y X+ D, w,
and a fixed order control

.X.'C = ACXC + ch, (3)
u=C.x.+D,y,

where xe R™ and x.e R"¢ are the states of the
plant and the control, ue R is the control input,
we R™ is the exogenous input, ye R" is the

measured output, and ze R": is the controlled out-
put. Define a system matrix ©, of the control by

. B

O, :{A‘ } @
C. D,

Then the closed-loop system is given by the state

equation

xcl = Aclxcl + Bcl w,

&)
= Cclxcl + Dclw’

where the system matrix @, of the closed-loop sys-
tem is given by

(6)

which shows that ©,; is an affine transform of ©,.
Most linear controls can be obtained by solving BMI

problems on ©,. and some matrix variables [24].

For example, consider the following H, control
problem.

Let 7, be the closed-loop transfer function from
wto z. Then, the H_, norm constraint, 17, II.<y,
is equivalent to the existence of a symmetric matrix
P, e RVxHXnetie) ihar satisfies

ATP +P.A, P.B, C}
B P, -yl, Dy |<0, (D)
Cc[ D, cl - 7/1 n.
2. >0. (8)

The inequality (7) can be denoted by

0 0 0
0 i 0
0 0 _}/In.
P, 0 -
do ole,l 00 ©)
o 4o 1, 0
L 1z -
(1 0 _
My tn,. @T P. 0 0
+ 8 I,(l)w dl o o Inz_<0,

and by substituting (6) into (9), we obtain a BMI on
©. and P_ as follows:

C
A.(P)+B_(P.)0,C.. +CLO'B (P)<0, (10)

where the matrices A_(P.) and B_(P,) are af-
fine transforms of the matrix P_,,and C_ is a con-
stant matrix obtained from (6) and (9).

Hence, the H, control problem is to find ©,
and P_ that satisfy (8) and a BMI (10). It is noted
that as in {24], (10) can be reduced to an LMI if
n. =n,. However, if n.<n,, then (10) cannot be
reduced to an LML

Some control objectives such as H, per-

formance require an equality constraint D, =0 or
DZW+DZDCDW=0' (11)

The equality constraint (11) can be eliminated using a
structured control as follows. If
D,D!D.,D!D, =D,,, then a solution of (11) exists
and all solutions of (11) can be represented by

W
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D,
=-D}!D,, D, +D.-D}D,D.D,Dy,

D. 0 I,
=_D;DZWD;+[1,,M —D;DZ]{ ¢ H y },
0 D.| Dp,D}
(12)

where D; and D, are pseudo inverse of D,
and D, , respectively and ©, is an arbitrary matrix

[5]. Hence, the control ©, that satisfies (11) can be
denoted by

6 0 0
. 0 _D:Dzvat_
_Inc 0
0 I,
I, I, 0 0 0 y
n c ¢ Ir, 0 )
6 0 1, I, -DD, ‘
U u 0 Iny
L0 DDy ]
(13)
where @ is defined by
O = diag(A,.,B.,C.,D.,D,) (14)

By using the structured control (13) we can remove
the equality constraint (11) from control objectives.

For example, consider the following H, control
problem.

The H, norm constraint, |I7,, Il%<v , Is
equivalent to the existence of symmetric matrices
Py e RUTXe) gnd e R™™:  that satisfy

AP, +PA, P,B, |
cl 2T 2Acl 28¢] <0’ (15)
B, P, 1, |
.
{PZ Ca |50, (16)
Ccl Q i
Trace(Q)< v, {an
D, =0. (18)

Using ©,,, (15) and (16) can be rewritten by

0 0 LB 0@ cof | B2 %<0 (19)
0 —Inw 0 0 cl cl 0 0 >

Pz O+0 0 @ Inx+nC O
0o ol |0 L] o o

L, .. O T 0 0
4 e Tl >0.  (20)
': 0 O:I l 0 I”z

All controls that satisfy the equality constraint (11)
can be represented by (13). Hence, by substituting
(13) into (6) and substituting (6) into (19) and (20),
we have a BMI

A, (P)+B,(B)OC,, +CLO Bl (P)<0 (21)
on ©® and B, and an LMI
Ay (P, Q)+ B,y (P)OC,, +CH,0 B, (P) <0(22)

on ©, B, and Q, where the bold faced matrices in
(21) and (22) can be easily obtained from (6), (13),
(19) and (20). Hence, the H, control problem is to

find ©, B, and Q satisfying (17), (21), and (22).
In addition, most multiobjective control problems
are BMI problems. For example, the mixed H,/H.,

control problem is to find ©, P, B, and Q that
satisty (17), (21), (22), (8), and a BMI that is ob-
tained by substituting (13) into (7).

Structured control means that the matrices A,

C

C b
structures. The decentralized stabilization by static
output feedback is a typical example of structured
control. Consider a system

B

., and D, of the control (3) have some

()= A+ By (),

(23)
Y =Cyx(t), Vk=1, ..., r
and a set of controls
w, (=0, y. ("), Vk=1, ..., r, (24)
where ©, € R7™% for all k = 1, ..., r as in [23].
Denote the matrices B and C by
B=[B B.1, c=[c] .. Cc'1. (25

Then the decentralized control (24) guarantees stabil-
ity if and only if a positive definite matrix P exists
that satisfies the inequality

©, .. 0
(A+B| : . i) e
0 ... 0O, (26)
0, 0
+P(A+ B| : C)<0.
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Remark 1: (24) represents a static control. In the
case of a dynamic control, we may also have a BMI
that is similar to (26) with appropriate matrices.

Hence it is clear that the system matrix
08.e R”9 of the structured control can be repre-
sented by

0, =U+VOwW 27
with appropriate constant matrices U, V, W, and a
matrix variable @€ @y, where @y is a set of
block diagonal matrices as follows:
g Js J,
. ,—/%
O = {diag(9,,...,0,,0,,...,0,,...,0,,...,,0,)

19, € RPF9% Yk =1,...,r}. (28)
In (28), J, is arepeat number of the submatrix O,

for all k = 1, ..., r, and hence ZIrc=1 Jipr =p and

Z,’(zl Jiqr =q . For given @Oy, define sets of matri-

ces, S and Ty asfollows:

Jj Iy Jy

. —_———
Sic ={diag(S;,...,51,52,...5872,...55,5...55,)
IS, € RPFPE ke =1,...,r}. (29)
1 Jy J,
. —_——— ——t—— ——
T]C :={dlag(Tl"'"Tl’TZ""’TZ"“’Tr"“’Tr)
| T, € R ik =1,...,r}. (30)

The above examples show that multiobjective and
structured control problems can be described as the
following problem:

Problem 1: Find ©€ ®x and Pe P that sat-
isfy the inequalities
A;(P)+ B;(P)OC; +cTe’ Bl (P)<0 (31)

foralli=1, ..., m.

In Problem 1, A;(P) is a symmetric affine transform

of Pforalli =1, ..., m.. That is, there are constant
matrices K; and I; and a symmetric matrix H;

such that

A(P)=H,;+K,PL; + LT PKT (32)
foralli=1,...,m. B;(P) is an affine transform of P,
and can be represented by

B,(P)=E,; + F,PG; (33)
foralli=1,...,m, where E;, F;,and G; are some

constant matrices. ® and P are matrix variables to
be determined. @, is a set of matrices defined by

(28),and P is aconvex set of matrices.

Remark 2: In Problem 1, P may be nonsquare,
asymmetric, or structured, for example

P =diag(P,...,P,). Thatis, P may be a convex set
of arbitrarily structured matrices.

It can be shown that Problem 1 is equivalent to the
following problem in which there are no BMI con-
straints.

Problem 2: Find NeO®x, MeSx, ReTy,
Ze T ,and Pe P that satisty the inequalities

AP)-cl'zc, B.(P) CT

B! (P) ~M =N|<0 (34
C -NT -R
foralli=1, ..., m and an equality
Z=(R-N"M'N)L. (35)

We will make use of the following lemmas to prove
that Problem 2 is equivalent to Problem 1.

Lemma 1: [6] Let A, B, and C be given constant
matrices. If a matrix ® exists that satisfies the ine-
quality

A+Boc+cTe’BT <o, (36)
then a positive scalar ¢ exists such that
A-0BBT <0, A-oCTC<0. (37)

Lemma 2: Assume that @e @y, X € Si, and

Ze Ty, and
M Nl [x o' -
NT R| |O" Z

then we have Ne @y, M e Sx,and Re Ty .
Proof: The result is clear from the definitions of
the sets. 0

Theorem 1: A solution of Problem 1 exists if and
only if a solution of Problem 2 exists. Furthermore, if
a solution of Problem 2 exists, then
®= —M_IN(R - NTM'IN)_1 is a solution of Prob-
lem 1.

Proof: (=) Assume that ® and P exist that sat-
isfy Problem 1. By Lemma 1, a positive scalar ¢
exists that satisfies the inequalities

A (Py-oclc; <o (39
foralli=1, ..., m. Hence, we obtain
AP -clzc; <0 (40)

for all i = 1,

Z 2 ol . A sufficiently small scalar £ >0 exists

.., m, where Ze Ty such that
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that satisfies the inequalities
A/(P)+ B;(P)OC; + C] ©" BT (P) + &B;(P)B! (P) <0

41
foralli=1, ..., m. Hence we obtain
A.(P)+B;(P)OC; +cl " Bl (P)+ B,(P)XB! (P)<0
(42)
for all i = 1, ..., m, where X e Sk such that

0<XS€1,,.

From (42), we have

T
4,(P)-CT ZC, +1B,(P) CIT][ (;‘T ;’}[B,- (P)} 0

Ci
(43)
forall i =1, ..., m. Using a matrix Ze Ty that sat-
isfies Z 20, and
X ©
>0, 44
{@T Z} (44)
we obtain
AP)-cTzc, [Bip) c]]
Bl  [x e]'|<0 @5
C, e z
for alli =1, ..., m. Denote the inverse matrix in (45)
by
-1
M N X ©
= , 46
[NT Rj| [@T z} (46)

then we have Z =(R~NTM"1N)_1 , and by Lemma
2, MeSyx, NeOy,and Re Ty . Hence, we have

a solution to Problem 2.
(&) Assume that the matrices Z, M, N, R, and P are
solutions of Problem 2, then we have

A;(P)+ B;(P)OC; +C] ©" BT (P)+ B;(P)XB! (P)<0

47)

foralli=1, ..., m, where
O=-M'NR-N"M'N)T, (48)
X =M -NR'NTH L, (49)

It is easy to show that ®€ @, and X >0. Hence
© and P are solutions of Problem 1. O

From Theorem 1, we can obtain a solution of Prob-
lem 1 by solving Problem 2, which has LMI con-
straints (34) and a nonlinear matrix equality con-
straint (35). It is easy to show that (35) can be re-
placed with (see [11])

R-N"M~'Nz2z! (50)
and
Tr(R-N"M7IN-z71=0, (51)
where (50) can be reduced to an LMI as follows:
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Lemma 3: Assume that M >0. The matrices Z,
M, N, and R satisfy an LMI

Z 0 Iq
0 M N |20 52)

1, NT R

ifandonlyif Z>0, R>0,and
R-N"M7'N-z71>0. (53)
Proof: See Appendix A. ad

From Lemma 3, it is clear that the nonlinear matrix
equality constraint (35) can be replaced with (51) and
(52). Hence we obtain the following theorem:

Theorem 2: A solution of Problem 1 exists if and
only if the minimum of the following problem is O.

Problem 3:
Minimize T(R-N"M'N-z71)
MeSy ,Ne®Oy,Z,Re Ty ,PEP
subject to
Apy-clzc; B(P) cf
B! (P) -M -N|<0 (54
C; -NT -R
foralli=1, ..., mand
z 0 I,
0 M N|20. (55)
1, NT R
O

Remark 3: (55) can be denoted by a set of LMI’s

Zy 0 I,
0 Mk Nk ZO,Vk=1,...,r, (56)
I, N[ R

where Z,, M, , N, and R, are submatrices of

the block diagonal matrices, Z, M, N, and R, respec-
tively. (56) is preferred to (55) because (56) requires
less computer memory.

If the minimum of Problem 3 is 0, then the solution
of Problem 1 is given by

O=-M"'N(R-N"M"N)!
or
O, =-M'N (R, ~NIM['N ) Vk=1,...,r.
However, we obtain a solution of Problem 1 even if

the object value of Problem 3 is not zero from the
following theorem:

Theorem 3: If MeSx, NeOg, ZeT,
Re Ty ,and Pe P existthat satisfy (54), (55), and

cl@z-@®R-N"M'Wy Y, <B;(P)XBI (P)  (57)
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for all i = 1, ..., m, where X=(M—NR_1NT)_1,

then ©= —M_IN(R — NTM_IN)_1 is a solution of
Problem 1.
Proof: From (54), we have

A(p)-clzc;

T X © Bl (P)
+[B;(P) C} ][@T (R—NTM_IN)'IH c J<o

(58)
foralli=1, ..., m. Hence from (57), we have (31). O

3. OPTIMIZATION ALGORITHM

It is easy to see that the objective function of Prob-
lem 3 is concave. Hence there is no algorithm that
always guarantees a global minimum of Problem 3 in
feasible time. To obtain the local minima of such
concave minimization problems, a linearization
method is used, such as in [1, 11, 20]. At a given
point (Z, M, N,R), alinear approximation of Prob-

lem 3 is given by

Problem 4:

Minimize Tr(F;(Z,M,N,R))
MeSk ,NeOy:,Z,ReTy,PeP

subject to (54) and (55), where
F] (Z9M9N’ R)

=R-2NTM N+ NTM MM N +271227),

An algorithm for obtaining a local minimum of
Problem 3 is given as follows:

Algorithm 1:

1.Find a random feasible solution (Z,M,N,R) of
Problem 4.

2. Find a solution (Z,M,N,R) of Problem 4.

3. If the stopping criterion (57) is satisfied, then exit.
If it reaches a stationary point, then go to Step 1.
Otherwise, set (Z,M,N,R)=(Z,M,N,R) and

go to Step 2.

In Step 1, a random initial feasible solution can be
obtained as follows:

e Select a random matrix (Z,M,N,R) and a

large bound M.
¢ Solve the following problem:

Minimize Tr(Fy(Z,M,N,R))
MeSyx ,Ne®Ox ,Z,ReTy ,PeP

subject to (54), (55), and
Tr(diag(Z,M ,R,P)) <M, (59)
where
F(ZMNR=ZTZ+ MM+ NTN+RTR.

e Set (Z, M,N,R)=(Z,M,N,R).

In (59), a large bound M is introduced to prevent
unbounded solutions. Step 1 and Step 2 are LMI
problems that can be solved by semidefinite pro-
gramming algorithms [7, 21, 25, 26].

There can be multiple local minima in BMI prob-
lems. In Algorithm 1, one or several local minima can
be searched by using random initial feasible solutions
This random search method does not guarantee that
each local minimum has a different value. However,
the numerical experiments will show that the pro-
posed local search method is effective.

4. NUMERICAL EXPERIMENTS

In this section, the efficiency of the proposed
method is illustrated by numerical examples: mixed
H,/H.., control, mixed H./H., PID control, simultane-
ous stabilization by decentralized static output feed-
back, and simultaneous stabilization by static output
feedback. To solve LMI problems in Algorithm 1, we
used the semidefinite programming code SP [25] and
Matlab on a Sparc Workstation. The SP parameters
for absolute and relative convergence were both set to

1078,

5.1. Mixed H,/H., control
This example is taken from [24]. Consider a three-
state unstable plant with equations

0 10 2 1 0
x=|-1 1 0 |x+]|0|w+]|1 |u,
(60)
0 2 -5 1 0
y=12x +2w,
and performance outputs
X2
X
Zw:( }, = X3 |. (61)
u
u

In [24], a mixed control was obtained by solving the
following problem

Minimize NT,. W subjectto T, |, <23.6.

wz
The optimal value of the above problem is 7.748. The
control obtained in [24] guarantees an H, perform-
ance of 8.07. To use the method proposed in this pa-
per, we solved a modified problem

Find a control that satisfies T, 11,<8.0 and

IT,, N.<236.

Because of the H, performance objective, D, of the
controller must be 0. Hence the problem is to find a
structured control
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o, {AC Bc}
C. 0

1 0
Lo oA 0 0] |k
= e 0O B. 0|0 1, |62
o 0 I, y
u 0 0 Cc I 0

ne

that achieves the specified performances.
By using Algorithm 1, we obtained a controller

—6.7262 57486  32.9562 33.75
x,=| 316809 -78.2219 3.1284 |x,+|55.169 |y,
30.6526 -72.2637 -10.0598 23.826
u =(-0.0303 -0.901 0.3320). (63)

The control has an H, performance of 7.9029 and an
H.. performance of 23.31. Reduced order Hy/H.. con-
trols also can be obtained by the proposed method.
For example, a second order control

(26649 -0.3836 ~9.5812

X = XC+ y,
~1.9013 -5.2169 ~14.8499)°  (64)

u=(-0.2440 0.9762)

was obtained using Algorithm 1. The control has an

H, performance of 8.81 and an H., performance of
23.3.

5.2. Mixed H»/H.. PID control
This example is taken from [9] in which a genetic
algorithm for the mixed H,/H.. PID control was pro-
posed. Consider a plant
0.8

P = ——
() $(0.5s+1)°

(65)

a weighting function W(s)=1/(s+1), and PID con-
trol
C(S):kl +k2/s+k3s . (66)
Then the weighted transfer function is given by
W(s)

14+ P(s)C(s)
_ s> + 252

(s+ 1)(0.553 +(1+ 0.8k3)s2 +0.8%k5 +0.8k,) '

Ty, (8)=

(67)

The state space realization of the transfer function is
given by

-3 -2 0 0
1 0 00
Acl =
0O 1 00
0O 0 1 0

1.6
0110
0
Hoy |k k)00 1 1,
1100
0
B,=(1 0 0 0), c,=(1 2 0 0), D;=0

(68)

The problem is to find the best H, control that
guarantees the H.. performance of 0.1. Using the ge-
netic algorithm in [9], PID control parameters
ky =29.9884 , k,=0.1845 , and k3 =30.0000
were obtained. These parameters guarantee the H,
performance of 0.1015 and the H., performance of
0.0238.

Using Algorithm 1 of this paper, the following
problem was solved.

Find a control that satisfies |IT,, 1,<0.1 and
17, ll,<0.1
We obtained PID parameters k& =11.450 ,

ky, =17.3243, and k3 =97.1921 that guarantee the

H, performance of 0.0576 and the H.. performance of
0.0439. In contrast to the genetic algorithm, the pa-
rameter domain is not required. Hence, we obtained
better control.

5.3. Simultaneous stabilization by decentralized static
output feedback
Consider the problem of decentralized and simul-
taneous stabilization by static output feedback as fol-
lows:

Find a structured control ©® and P, that satisfy

the inequalities

(A; +B,OC)) P+ P.(A + BOC,) <0,
P>al,

(69)

foralli=1, ..., m.

In the above problem, A e R™", B;e R™7,
C;e R®" and «is a positive scalar. This problem is
known to be NP-hard [4].

As in [22], we randomly generated ;11, B, and

C; so that ;ll was stable. © was randomly gener-
ated so that (A, — B,©C|) was unstable and we took
A =(A —B©C)). A’s, B/’s, and C/’s were randomly
generated so that A; was unstable and (4, + B;OC;)

was stable for all i = 2, ..., m. All random matrices
were generated using the function ‘rand’ of Matlab
so that all elements in the matrices were between —1
and 1. We set r=10 for all problems.

We generated one hundred problems for each tuple
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Table 1. Distribution of outer iteration numbers for

" Table 2. Distribution of outer iteration numbers when

decentralized stabilization. m=1.

(n,p,gm\ter. =1 <100 >1000 Average (n,p,g)\lter. =1 <100 >1000 Average
(3,2,2,1) 81% 95% 0% 12.65 3,1, 87.8% 98.5% 0.0% 53
gggg g(l)Z) 2%) i‘;’ ig-g (321)  938% 997% 0.0% 3.3

3y ly 0 (4 0 .
(5.3.3.1) 69%  85% 1% 18.00 (3,2,2) 96.7%  99.5% 0.0% 2.6
5,1,1) 82.8% 98.3% 0.0% 7.5
(n, p, g, m) in Table 1. For each problem we allowed (5,2,1) 81.7% 98.3% 0.2% 7.2
up to one thousand outer iterations. The averages of 6,1,1) 791% 97.5%  0.0% 10.4

the outer iteration numbers were computed excluding
the cases that failed to obtain a solution.

We considered some cases:
(Hn=5,p=3,9g=3,m=1,and

6 6, 0
©={0 0 6. (70)
0 0 6,

iyn=5p=2,9q=2,m=1,2,3,and

0= o 0 (71)
10 6]

Table 1 shows that most problems could be solved in
feasible time.

5.4. Simultaneous stabilization by static output feed-
back
Consider a set of systems

X (1) = Ax, (1) + B (1),

(72)

y; () =C;x; (1),
and static output feedback controls u;(t)=0y;(t)
foralli=1, ..., m. The simultaneous stabilizer can be

obtained by solving the following problem:
Find a control © and P. that satisfy the ine-

qualities
(4 +BOC) P, + P(A +B,OC;)<0,
P >al,

(73)

foralli=1,...,m.
In the above problem, A e R™", B eR™’,

C; € R™" and ais a positive scalar. This problem is
known to be NP-hard [4].

As in Section 5.3, we generated A;’s, B;’s, and C/’s
foralli =1, 2, ..., m, and we set a=100 for all
problems. We generated one thousand problems for

each tuple (n, p, g, m) in Table 2, Table 3, and Table 4.

For each problem we tried up to one thousand outer
iterations. The averages of the outer iteration num-
bers were computed excluding the cases that we
failed to obtain a solution within one thousand outer

Table 3. Distribution of outer iteration numbers when

m=3.

(n,p,g)\Iter. =1 <100 >1000 Average
(3,1,1) 68.6% 97.7%  0.0% 12.3
(3,2,1) 53.8% 948% 1.8% 15.9
(3,2,2) 48.7% 909%  2.2% 33.1
5,L1) 609% 96.4% 0.4% 15.5
(5,2,1) 325% 95.0% 0.8% 22.8
(6,1,1) 531% 951% 0.4% 17.7

Table 4. Distribution of outer iteration numbers when
n=3,p=1,g=1,and 1< m< 5.

m\lter. =1 <100 >1000 Average
1 87.8% 98.5% 0% 53
2 77.0%  96.6% 0% 12.5
3 68.6% 97.7% 0% 12.3
4 64.6% 95.9% 0% 15.9
5 61.0% 97.5% 0% 15.4
iterations.

In the special case m = 1, several methods exist for
obtaining a static control in [10, 11, 14]. Their per-
formances are compared in [22]. The results in Table
2 are comparable with those in [14, 22].

The results for the case m > 1 are shown in Table 3
and Table 4. The averages of outer iterations were
increased and there were more problems where the
number of outer iterations exceeded 1000 than the
case for m = 1. However it can be seen that most
problems were solved in feasible time using Algo-
rithm 1.

Consider the following two plants

1

“Gioeon

a
P1(5)=(—S?)2’ Py (s)

which are taken from [8] where an iterative LMI
(ILMI) method was proposed for simultaneous stabi-



International Journal of Control, Automation, and Systems Vol. 1, No. 3, September 2003 279

Table 5. Outer iteration numbers and control gains for
stabilization the plants B (s) and P,(s).

Algorithm 1 ILMI method
Iter. Gains Iter. Gains
5 18 -2.0718 3 —4.1981
0.5 1 -2.9735 3 —4.1988
-1 1 ~2.7413 3 -2.9769
-1.5 19 —2.0027 13 -2.3312
-1.9 113 -2.0064 759 —2.0638

lization by static output feedback. A static output
feedback control exists if a>—2. Table 5 shows the
number of iterations and resultant controls for each
value of a. It can be seen that the outer iteration
numbers of Algorithm 1 are comparable with those of
the ILMI method. Moreover, in case of a=-1.9,
Algorithm 1 is superior to the ILMI method.

5. CONCLUSIONS

In this paper, a nonlinear minimization problem is
proposed to obtain a solution of the BMI problem
that arises in multiobjective and structured controls.
An explicit algorithm for solving the proposed
nonlinear minimization problem is also presented
using a linearization method. The proposed algorithm
is easily implemented using efficient convex optimi-
zation codes. Numerical experiments show that the
proposed nonlinear programming approach is more
efficient than other existing approaches for multiob-
jective and structured control problems. The pro-
posed nonlinear programming approach can be ap-
plied to all BMI problems in multiobjective and
structured controls, such as simultaneous stabilization
by static output feedback, mixed H,/H.. control, and
simultaneous stabilization by decentralized output
feedback.

APPENDIX A

PROOF OF LEMMA 3
The following lemmas will be used in the proof of
Lemma 3.

Lemma 4: [6] If X and Y are symmetric matrices
and satisfy the inequality

X I
,:I YJZO, (A1)

then X >0, ¥Y>0,and X-Y!>0.

Lemma 5: [28] The inequality

[Xn X12}>0 A2)
X1 Xy

is satisfied if and only if X;;20 and
Xy - XHX[ X1, 20 where X[, is the pseudo

inverse of X|,.

Proof: From (52), we have

zZ 1, 0
I, R N |z0. (A,3)
0 N M

Hence, we also have

{Z 11>0
>0. (A4)

I, R

From Lemma 4, we have Z>0 and R>0. By
applying Lemma 5 to (52), we also have

L}\‘; ﬁ{lﬂ z'[o Iq]zLi:IT R_NZ_I:IZO.

(A5)
By applying Lemma 5 to (A.5), we have
R-N"M7'N2z"'>0. 0
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