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Serial Communication-Based Fault Diagnosis of a BLDC Motor
Using Bayes Classifier

Suhk-Hoon Suh and Kwang-Joon Woo

Abstract: This paper presents a serial communication based fault diagnosis scheme for a brush-
less DC (BLDC) motor using parameter estimation and Bayes classifier. The presented scheme
consists of a smart network board, and a fault detection and isolation (FDI) master. The smart
network board is installed near the BLDC motor drive system to acquire motor data and transmit
motor data to the FDI-master via serial communication channel. The FDI-master estimates
BLDC motor resistance to detect symptom of faults, and assign symptom to fault type using
Bayes classifier. In this scheme, since communication time delay has a serious effect on per-
formance, periodic and fixed communication protocol is designed. Hence, the delay time is pri-
ory known. By experiment result, presented scheme was verified.
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1. INTRODUCTION

With the demands of reliable servo system, the ap-
plication of a brushless DC (BLDC) motor has been
more and more increased. Nevertheless, a BLDC mo-
tor can fail. In particular, overload and overheating
can damage the stator coil, thus resulting in lower
performance. Moreover, necessary sensors for posi-
tion detection, e.g., Hall sensors, can fail as well,
while damaged or broken bearings may result in in-
creased friction. In closed-loop operation of servo
systems, these faults often remain hidden by feedback.
Only if the whole device fails, i.e., the motor stops
turning, does the failure become visible. Therefore, it
is desirable to detect an incipient fault as early as pos-
sible to perform maintenance before the failure of the
device occurs {1].

To detect BLDC motor faults, dynamic system
fault detection and isolation (FDI) methods are often
used. The purpose of dynamic system FDI is detect-
ing a fault as it occurs and identifying the faulty com-
ponent to perform appropriate maintenance before
critical system malfunctions are occurred. The FDI
can be applicable to plants, which demands a high
degree of system reliability such as power plants and
avionics systems. Therefore, FDI has attracted great
attention from both academic and industrial commu-
nities.

Using the fieldbus, control network, cables of con-
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trol system are replaced with networks. The fieldbus
network has advantages in the number of cable line
and EMI problem. However, data sent over control
networks differ from those encountered in networks
for data communication purposes [2]. In data net-
works, large sets of data messages are transmitted
occasionally at high data rates for short intervals of
time. In contrast, data in control networks are con-
tinuously sent out at relatively constant data rates.
Furthermore, there are crucial real-time requirements
to achieve certain control performance. Hence, com-
munication methods, or protocols, used in data net-
works are not necessarily appropriate for control use.
In the past decade, by groups of companies and pro-
fessional organizations, much effort has been made
for standardization of protocols [3].

Xiang-Qun et al. [4] discussed DC motor fault de-
tection and diagnosis by parameter estimation and neu-
ral network. Where, the electromechanical parameters
of the motor can be obtained from the estimated model
parameters, and the relative changes of electrome-
chanical parameters are used to detect motor faults.
Neural network is used to isolate faults based on the
patterns of parameter changes. Moseler et al. [1,5,6]
presented a real time fault detection for a BLDC motor
driving a mechanical actuation system. Where, they
drive a mathematical model which is based on the
bridge supply voltage, current and the rotor velocity.
Suh et al. [7] presented observer-based fault detection
scheme for a Permanent Magnet Synchronous Motor
(PMSM) drive system using serial network. And they
proposed fault detection scheme of BLDC motor drive
system by estimating BLDC motor resistance using
motor input and output data which is transmitted from
data acquisition board to host computer over serial
communication channel [8].
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In this paper, we presents serial communication
based fault diagnosis scheme of a BLDC motor using
parameter estimation and Bayes classifier. The pre-
sented scheme consists of a smart network board, and
a FDI-master. The smart network board is installed
near the BLDC motor drive system to acquire motor
data and transmit motor data to the FDI-master via
serial communication channel. By using smart net-
work board, the presented scheme can be applied to
amplifier, which have no communication function, or
different communication protocols. The FDI-master,
host computer, estimates BLDC motor parameters.
For fault diagnosis, we use mathematical BLDC mo-
tor model, which is based on the bridge supply volt-
age, current and the rotor velocity. In the model,
BLDC motor is represented by electrical and me-
chanical parameters, which are similar to the conven-
tional DC motor model. By estimating electrical pa-
rameters, we can get the information about coil and
load conditions. Therefore, we choose estimated
resistance as a feature data (fault symptom). Using
Bayes classifier, fault symptom is mapping to fault
types. For the presented scheme, periodic and fixed
communication protocol was designed. Hence, the
delay time is priory known. By experiment result, we
confirm the proposed scheme under discrete fault
occur case.

In Section 2, we introduce the parameter estima-
tion algorithm and the Bayes classifier. Section 3 ad-
dresses communication protocols. In Section 4, we
describe fault diagnosis scheme. The experiment and
results are stressed in Section 5, and Section 6 gives
conclusions.

2. PARAMETER ESTIMATION AND BAYES
CLASSIFIER

2.1. BLDC meter model

Moseler et al. [1, 5, 6] presented a real time fault
detection for a BLDC motor driving a mechanical
actuation system. Where, they drove a mathematical
model which is based on the bridge supply voltage,
current and the rotor velocity. In this paper, we use
their model for estimating parameters, so introduce
their model [1].

The model is represented as follows:

V= %(R1 +Ry +Ry)i (1) +§(Kel + Ko + K3, (1),

ey

VpumO=pwm(t) Vsuppiy,
pwm(t)€ [0,1]), R; and K,; (i=1, 2, 3) is resistance
and back-EMF constant of each coil. Substituting
2/3-(R +R, +R;) with R and 2/3-(k, +k,, +k,3)
with K, leads to the equation

where V(1) = Vopwm (t)
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Fig. 1. Block diagram of the motor model.

V) =Ri()+Kp0,.(2) . )

The average phase current i can be driven from the
bridge current by considering the power balance

Vp iy (D) =V (-1 (1) = pwm(®)-vy, -1, (3)

where v, and i, denote bridge supply voltage and
bridge current. Hence,

i(t)=iy(t)/ pwm(t). )

Fig. 1 represents the block diagram of the model,
where K7 is torque constant and J denotes the inertia
of the rotor.

2.2. Parameter estimation

The quantitative knowledge, a mathematical model
of a system is useful in detection fault. If the system
is represented with the mathematical model, we can
estimate model parameters based on input and output
signals (u() and y()). The least square algorithm is a
very simple and robust method of estimating parame-
ters [9].

Perhaps the most basic relationship between the in-
put and output is the linear difference equation:

yO) +ayt-D+..+a,y{t-n)
=bu(t—-1)+..+b,u(t—m).

6))

A useful way to see (5) is to view it as a way of de-
termining the next output value given previous obser-
vations:

y)==a;y(t -1 —...—a,y(t—n)

(6)
+bu(t—1)+...+ b, u(t —m).

For more compact notation we introduce the vec-
tors:

0=[a, .. a, b .. b,], %)

PO =[-y(t=1) =y =n) u(t=1) - u@t-m] .
&)

With these, (6) can be rewritten as
Y =9 16 ©
To emphasize that the calculation of y(t) from past
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data (6) indeed depends on the parameters in &, we
shall rather call this calculated value 3(t,6) and
write

3t,6)=¢" 1)6. (10)

Suppose for a given system that we do not know
the values of the parameters in @, but that we have
recorded inputs and outputs over a time interval
1<t<N:

ZN = @), y(),...,u(N), y(N)} . (11)

An obvious approach is then to select &, so as to
fit the calculated values y(z,6) as well as possible
to measured outputs by the least squares method:

mejnVN(Q,ZN), (12)

where

N
Va©.2") =3 (- 50,6)?
t;l (13)
=Y 00 -9 06
1=1
‘We shall denote the value of & that minimizes (13)
by éN:

Oy = argmin V), ©6.z%y, (14)

where “arg min” means the minimizing argument, i.e.,
that value of # which minimizes V), .

Since Vjy is quadratic in €, we can find the
minimum value easily by following equation.

) N -1 N
9N=|i2¢(t)¢T(t)il Do)y (15)

t=1 =1

(15) can be restated as the recursive least square (16)
to (18)

60 =6a-n+L0)| y)-¢" Wéa-D]| 6)

_ P(t —Do(t)
Aty +@T P - Do)’

L) )

P =D OPE=D | o
A)

o=l o - 200
A+ @' (Pt —De(1)

where L(f), prefilter, is to allow extra freedom in deal-
ing with non-momentary properties of the prediction
errors. In order to let the parameter estimation

action
(e.g., classification)

discriminant
functions

Fig. 2. The functional structure of a statistical pattern
classifier.

follow changing in the system, uses a forgetting fac-
tor 4, which means that older values of u(¢#) and

y(t) do not have so much weight as the newer val-

ues. The forgetting factor 4 is normally chosen be-
tween 0.95 and 1 [10].

2.3. The bayes classifier

There are many different ways to represent pattern
classifiers [11]. One of the most useful is in terms of a
set of discriminant functions g,(x), i=1, -, c¢. The
classifier is said to assign a feature vector x to class w;
if

g (x)>g;(x) forall j=#i. 19

Thus, the classifier is viewed as a network or ma-
chine that computes ¢ discriminant functions and se-
lects the category corresponding to the largest dis-
criminant. A network representation of a classifier is
illustrated in Fig. 2.

The fundamental principle of a Bayes classifier is
Bayes rule, shown in (20)

p(xlw;)P(w;) ) (20)
Y. p(xlw)P@;)

i=

P(w; 1 x) =

Bayes rule shows how the information of known
probability density functions p(xlw;) and a priori
probabilities P(w;) can be used to calculate the a pos-
teriori probability P(w;lx).

The minimum-error-rate classification can be
achieved by use of discriminant functions,

gi{(x) = In P(xlw;) + In P(w)),

where i=], -, ¢, 21

and this expression can be readily evaluated if the
densities p(xlw;) are multivariate normal - that is, if
p(xlw;) ~ N(u;, 3;). In this case, we have

1 - d
gy =——(x—p) Y ; l(x—,ui)—zln27r
21 (22)
—Elnlzi I +1n P(@).
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All the necessary information of each class (feature
cluster) is contained in the mean vector and covari-
ance matrix. The center of each cluster is determined
by the mean vector and the shape of the cluster by the
covariance matrix.

The quantity rt=(x- ) Z ,-_1 (x— ;) from (22) is

often called the Mahalanobis distance from an obser-
vation x to the center of the cluster p.

3. COMMUNICATION PROTOCOLS

The FDI-master, host computer, estimates motor
parameters using motor observations, which are
transmitted from the swmart network board over serial
communication channel.

In this paper, we design periodic and fixed frame
size bit-oriented communication protocol. Because
frame is deterministic, the order of data transmission
is scheduled and fixed prior to operation. Therefore,
the delay time and bandwidth is known. Fig. 3 depicts
protocol frame structure, and Table 1 explains each
frame field.

The frame coriists of SOT, eight motor informa-
tion bytes, check sum to error detect, and EOT. The
communication begins by the FDI-master’s request,
and the smart network board sends data every 20 ms.
The token is passed from the FDI-master to the smart
network board with request. And the smart network
board hold token until the FDI-master requests return
it. Fig. 4 is the communication sequence between the
FDI-master and the smart network board. Fig. 5 de-
picts the effect of sampling time. From the figure, we
can conclude that different sampling time makes dif-
ferent estimated value. Therefore, for estimation pa-
rameter using network, fixed sampling time is neces-
sary.

o PRl em P2 | P2 T (o 5
EOT’&H lou | Cur%],ﬁiﬂ'ﬁ’ﬂf I RPW| ©8 | EOT

Fig. 3. Protocol structure.

Table 1. Definition of protocol field.

Byte Field Define

No.
1 SOT Start of transmission
2 Phl Cur. H | Phase ! current high byte
3 Phl Cur. L. | Phase 1 current low byte
4 Ph2 Cur. H | Phase 2 current high byte
5 Ph2 Cur. L | Phase 2 current low byte
6 ip-H Bridge current high byte
7 ip-L Bridge current low byte
8 PWM PWM
9 RPM Rotor speed
10 CS Check sum
11 EOT End of transmission

FDI—master Smart network board

Communication

begin \

/ 20[msec]
Calculation / 20[msec]
Calculation /

Calculation

Izo[msec]

Communication

end \

Fig. 4. Communication sequence.
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Fig. 5. The effect of sampling time.

In the experiment, we set 19200 baud, 8 data bits,
no parity, and 1 stop bit asynchronous protocol, which
make 5.7 ms communication time delay.

4. FAULT DETECTION AND ISOLATION
SCHEME

Fig. 6 shows the proposed FDI scheme. The Smart
network board acquires bridge current and speed of a
BLDC motor. Acquired information is coded to digi-
tal value for transmitting. The universal asynchronous
receiver and transmitter (UART) converts parallel
data to serial data, and transmit data to the FDI-
master via serial communication channel, RS-485.
The FDI-master decodes received data, and estimates
parameters. Estimated parameters and their known
probability knowledge are used for diagnosis faults.
Then, the results are displayed on a screen and saved
as a file.

The FDI-master is designed based on PC and func-
tions arc implemented using Visual C/C++, and the
smart network board is designed using ATmegal03
microcontroller with C language. This microcontrol-
ler has 8 channels 10 bits A/D converter,
timer/counter and UART.
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Fig. 6. Fault diagnosis scheme.

5. EXPERIMENT AND RESULTS

In the experiment, five fault types are considered.
Fault types and fault injection methods are listed in
Table 2. The BLDC motor under test is POWERTEC
model L42ALA1100700000, and Table 3 shows
nominal motor parameters. From (2) R and Ky are
calculated as (23) and (24).

R= 2/3-(R +Ry+R3y) =2.14Q, (23)
Ke= 2/3-(k, +k,y+k;) =004 Vipm.  (24)

To estimate BLDC motor parameters, R and K ,
pseudo-random binary signal (PRBS) is applied as an
input and rotor speed is measured as an output. Fig. 7
shows motor input and output signals.

The presented fault diagnosis scheme detects a
fault symptom and then, isolates faults. The scheme
use variation of the estimated BLDC motor resistance
R as the fault symptom, and assign fault symptom to
fault type using Bayes classifier. Resistance R, fault
symptom, is estimated by recursive least square algo-
rithm of 0.9999 forgetting factor, which gives 10000

Table 2. Fault types and injection methods.
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Fig. 7. BLDC motor input and output.

samples effective window. Bayes classifier requires
probability characteristics of fault types to calculate
discriminant functions. In the experiment, probability
distributions of each faults are assumed as normal
distribution, and probability of each fault is 0.2. The
mean and variance of each fault type are calculated
using over 20000 estimated resistance samples. The
five fault types scatter diagram and probability densi-
ties are plotted in Fig. 8, and mean and variance of
each fault types are listed in table 4. Fig. 8 shows that
five faults are statistically independent.

The experiments are performed under 3 scenarios.
The first scenario is that the BLDC motor starts with
fault number O condition. After 300 seconds, 2 Q re-
sistor is added to BLDC motor one phase, R;. The
fault number 1 condition is maintained continuously
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#

fault 1 fault2 fault 3 fault 4

25 3
robabifity density
T fault 3

jiiic] fault 0

bapk-arrd[Virarm]
o
B

3

fault 1

g &

fault O

fault 4

sample nlimbers

8

£
K

25 3
*raststuncefohim]

Fig. 8. Faults scatter diagram and probability density.

Table 4. Parameter estimation of fault-free and faulty

Fault Fault Type Fault Injection Method

No.
0 Fault free None
1 Increase of R; | Add resistance of 2 (2
2 Increase of R; | Add resistance of 4 Q
3 Increase load | Add 1Kg load
4 Increase load | Add 2Kg load

Table 3. BLDC motor parameters.

Parameter Define

Resistance, R 1.07 Q

Inductance, L 6 mH

back-EMF constant, K,; | 0.02 V/rpm

torque constant, Ky 0.175 Nm/A

number of pole pairs 4

motor.
RO Kz [Vipm]

Fault | Mean | Variance Mean Variance
No. | [4] [o] [¢] [o]
0 2.1819 | 8.6493e-4 | 0.0295 | 7.6052¢-9
1 2.3264 | 6.4188e-4 | 0.0297 | 5.8079¢e-9
2 2.4658 | 0.0013 0.0297 | 5.9533e-9
3 2.5920 | 6.0077e-4 | 2.5920 | 6.0077e-4
4 3.1124 | 0.0026 3.1124 | 0.0026
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from 300 seconds until 600 seconds. At 600 seconds,
4 Q resistor is added to R;, fault number 2 is injected.
Fig. 9 shows results of scenario 1. The figure shows
that Bayes classifier exactly discriminates fault type
with about 200 seconds transition time, effects of for-
getting factor.

The second scenario is the BLDC motor starts with
fault number 3 condition, and the third scenario is the

BLDC motor starts with fault number 4 condition. Fig.

10 shows diagnosis results. The results shows, pre-
sented scheme exactly isolates fault type 3 and 4 in
the steady state condition.

6. CONCLUSION

This paper presents serial communication based
fault diagnosis scheme of a BLDC motor. In the
scheme, we design the smart network board, which is
installed near the BLDC motor drive system, and the
FDI-master, host computer. Observations are coded,
and transmitted by the smart network board, and then,
they are decoded by the FDI-master for estimation
parameters. By using estimated resistance as a fault
symptom and Bayes classifier, faults are mapping to
fault causes. To design Bayes classifier, probability
distributions of each parameter are assumed as nor-

mal distribution and mean and variance of five fault
types are calculated using previously gathered data.
By applying communication channel, we can save
cable lines and transmit observations more safely. The
experiment is performed under three scenarios, and
experiment results show that presented scheme is use-
ful to diagnosis a BLDC motor.
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