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Localization and a Distributed Local Optimal Solution Algorithm for a
Class of Multi-Agent Markov Decision Processes

Hyeong Soo Chang

Abstract: We consider discrete-time factorial Markov Decision Processes (MDPs) in multiple
decision-makers environment for infinite horizon average reward criterion with a general joint
reward structure but a factorial joint state transition structure. We introduce the “localization”
concept that a global MDP is localized for each agent such that each agent needs to consider a
local MDP defined only with its own state and action spaces. Based on that, we present a gradi-
ent-ascent like iterative distributed algorithm that converges to a local optimal solution of the
global MDP. The solution is an autonomous joint policy in that each agent’s decision is based on

only its local state.
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1. INTRODUCTION

We consider discrete-time factorial Markov Deci-
sion Processes (MDPs) in multiple decision-makers
environment for infinite horizon average reward cri-
terion with a general joint reward structure but a fac-
torial joint state transition structure such that each
agent makes his state transitions independently from
the other agents according to his own local state tran-
sition structure. Even though the global MDP is fac-
torial, solving each local MDP for each agent inde-
pendently does not necessarily provide a global MDP
solution due to the general reward structure. Each
agent needs to take action at its local state in a coop-
erative manner to maximize the global average re-
ward due to the reward structure.

Unfortunately, the complexity of solving the global
MDFP is often large even if the local state and action
spaces of each agent are small. To break the curse of
dimensionality, an approach is to develop a coopera-
tive solution scheme whereby certain tasks are dis-
tributed to the agents, and the results of the tasks are
merged or coordinated via some predetermined
communication protocol. Then, new tasks are distrib-
uted to the agents and the same processes continue
until a certain terminating condition is satisfied.
However, such a distributed approach should meet
the following conditions to be sound and efficient.
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First, the overhead of the communication among the
agents must be kept to a minimum. Second, the task
that has been assigned to each agent needs to be
small in terms of time and space complexities. Finally
the merged result must provide a useful and meaning-
ful global solution. However, the nature of the inter-
dependencies among the agents makes it very diffi-
cult to design such a scheme and to the best of the
author's knowledge, there are few prior works on de-
veloping any distributed algorithm with these aspects
satisfied. The present paper is a step toward develop-
ing an efficient distributed control scheme that meets
the above conditions under the assumption that the
local state and action spaces of each agent are small.

We introduce the concept of “localization”
whereby a factorial MDP is localized for each agent
such that each agent needs to consider a local MDP
defined only with its own state and action spaces or
its local parameters. Given a selected local policy for
each agent, the global MDP is projected into a local
MDP for each agent with respect to the selected poli-
cies of the other agents. The projection is performed
by the stationary distributions of the Markov chains
induced from the policies of the other agents. We will
show that solving the local MDP for an agent pro-
vides the best reactive policy to the policies of the
other agents. Based on this, we present an iterative
distributed algorithm that converges to a local opti-
mal solution of the global MDP. The solution is an
autonomous joint policy where each agent’s decision
is based only on its local state. This policy will be
useful in that during the actual policy invocation over
the decision making process, each agent does not
need to observe the states of the other agents.

The algorithm starts with an arbitrary local policy
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for each agent. At each iteration of the algorithm,
every agent needs only the information of the flag for
a certain termination condition, the currently selected
local policies of the other agents, and the stationary
distributions of the local policies of the other agents
for their currently localized MDPs.

With that information, each agent computes the
best local reactive policy with respect to the local
policies of the other agents by solving its currently
localized MDP. The computation of the best local
reactive policy does not require any communication
among the agents. With a certain monotonicity prop-
erty, the algorithm converges to a local optimal solu-
tion for the global MDP.

Some previous works on the decentralized control
of finite-state Markov processes [1, 11] have consid-
ered partitioned state and/or action spaces with a de-
layed sharing information structure. Even though an
autonomous joint policy structure is considered, the
algorithms for computing an optimal policy with such
structure are centralized with the given global pa-
rameters. Similarly, asynchronous implementations of
value iteration (see, e.g., [18]) presented in [4, 12] are
done with the global parameters via a communication
protocol. Kushner and Chen [15] present an algo-
rithm that generates a set of independent local sub-
problems at each iteration, which can be solved in
parallel by the Dantzig-Wolfe decomposition tech-
nique based on a linear programming formulation for
a given MDP, where the MDP does not have a parti-
tioned state/action space. However, the algorithm is
based on the assumption that grouping of states is
possible such that each group is connected with other
groups via some border states that do not belong to
any group and need to be identified in advance. The
performance of the algorithm depends on how such
grouping is done in a topological sense. Each inde-
pendent sub-problem for each group is defined with a
local parameter of the group, but at each iteration, a
centralized problem must be solved with solutions
to the local sub-problems.

This paper is organized as follows. In Section 2,
we describe a class of MDPs we consider and provide
some motivating example problems with such struc-
tures of MDPs. In Section 3, we then introduce the
concept of the localization and in Section 4, we pro-
vide an iterative distributed algorithm based on the
localization concept. We conclude the paper in Sec-
tion 5 with some remarks.

2. MULTI-AGENT MARKOY DECISION
PROCESSES

2.1. Model

We formally describe a class of Markov decision
processes with multiple decision makers that we con-
sider in the present paper.

Each decision maker or agent i=1,...,N <o has
its own finifte state space X, and finife action space
A; . It is assumed that every action in A; is admis-
sible at each state in X; for agent i for simplicity.
We define a local policy 6,: X X---X Xy — A for
agent i and denote the set of all possible such local
policies for agent i as &, and also define an autono-
mous local policy m;:X; — A; for agent i and de-
note the set of all possible such local policies for
agentiasII;.

Each agent i is associated with its local state transi-
tion function P, such that P :X;XA — D(X;),
where D signifies a probability distribution
over X; . We denote the probability of transitioning
from state x;€ X; to y;€ X; by taking an action
a;€ A at x; as P(y;lx;,a;). Given a local reward
function R; such that R, :X;xA — R, we denote
the local MDP for agentias M; =(X;,A;,R;,P).

We define a global MDP M =(X,A,P,R) as fol-
lows from the dynamics of each agent: the joint state
space X is given such that xe X is an N-tuple
x=(x,...,xy), the joint action space A such that

ac€ A is an N-tuple a=(q,,...,ay), the joint state
transition probability such that for x,ye X and

ae A,P(y|x,a)=Hji,Pj(y,- lx;,a;), and a joint re-

ward function R: X XA — R . We assume that R is
bounded such that there exists a constant M < oo
with max, , R(x,a)<M and also assume that there

is no interdependent constraint on the action set. That
is, taking an action a; by agent i does not affect or

limit the action choice of any other agent.

From the global state transition function, we con-
sider the class of MDPs that are factorial. However,
solving each local MDP M,,i=1,...,N independ-
ently does not provide the solution of the global MDP
necessarily due to the general structure of the global
reward function. This is because even though the
global MDP is factorial, each agent needs to take an
action at its local state in a cooperative manner in
order to maximize the global average reward due to
the reward structure.

We denote a joint policy for all the agents as an N-
tuple €=(4,,...,0y) and © as the set of all pos-
sible such joint policies, and we state that a policy
6 is  fully decentralized if O@=(m,....7y)
withz; € I1;,i=1,..., N . We will make the following
assumption throughout the present paper:

Assumption 1: For each i=1,...,N, the local
MDP M, is unichain.

Note that the unichainedness is independent of the
local reward function, and by the above assumption,
the global MDP M is also unichain.

Given 8 ® , define the following value
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E{ZiglR(x,,B(x, Nlxy = x}

?

function J ¢ (x)= lim
H oo H

where H is the horizon size and x, is a random vari-
able that denotes a state in X at time r. It is well-
known that under Assumption 1, J e(x) is inde-
pendent of the initial state x (see, e.g., [18]) and is the
same for all states. We denote the average reward of
following the policy & as a constant g°.

The goal is to find an optimal joint policy 6'c0
that achieves the optimal average reward g* that
satisfies

g*=g‘9 de for any € ©.

The time-complexity of solving the global MDP M
is O(IX |2 IAI) for applying just one “policy im-
provement” step in policy iteration and for just one
iteration in value iteration [16]. Therefore, if either
IX| or IAl is large, solving the MDP M via the well-
known exact methods is impractical.

2.2. Some remarks on the model

Some problems are involved with an exogenous
stochasticity - a stochastic component that does not
depend on control actions taken by the agents. For
example, for robot navigation, certain unknown
things can obstruct the robot from carrying out proper
navigation where the occurrences of the events are
independent of the navigational actions of the robot.

This component can be added to our model just as
an artificial agent that makes independent transitions
from the other agents with a proper definition of its
action space. The artificial agent always undertakes
one action of “do” at every local state.

There are several (ergodic) conditions from which
we can check the unichainedness of MDPs. See for
example [10, p. 56]. The simplest condition, called
the “minorant” condition, is where exists a state, call
it 0, such that for any pair of a state and an admissible
action at that state, with a positive probability, O is
reachable from that state. For example, the system
can reach a “reset” state with a positive probability
(from any state with any action). Suppose that a
given MDP is not unichain. We can then add an arti-
ficial state X =(x},...,Xy) to X by adding X; to
X;,i=L...,N such that X; is reachable from any
local state x; with probability £=0 by taking any
admissible action a at x. But to make each agent
unwilling to reach the added local state in their opti-
mal decisions, we make the immediate reward of tak-
ing any action at x; extremely small.

In this way, we can transform the given MDP into
a unichained MDP and an optimal solution for the
unichained MDP can approximate an optimal solu-
tion for the given MDP very closely.
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3. SOME FACTORIAL MDPS

In this section, we provide simple examples that
have the factorial structure we imposed on the MDP
model to motivate the localization concept approach.
We do not discuss the unichainedness property here
as we provided the related remarks in the previous
section.

3.1. Multi-robot navigation

Assume that there are K >1 robots, in a BXRB
grid world, where a robot's position is described with
two-tuple (h,v) with h,ve G={1,...B}. A robot's
local state is its position expressed by a two-tuple,
and its local action is to choose from among left,
right, up, down, and stay. If a robot chooses left in a
state (h,v), then with probability p >0, it moves
to (h—1,v) if (h—1v)e GXG . It moves to one
of the reachable neighbors with the equal probability
q >0 such that the sum of probabilities is one and
becomes stuck in the current position with probability
one if (h—1,v)& GXG , where all of the moves are
made independently from the other robots. We can
define the robot's stochastic position change for other
actions (right, up, and down) similarly. If a robot
chooses the stay action, the robot stays at its current
position.

The immediate joint cost from particular moving
actions taken by each robot is the maximum value of
(average) mutual Euclidean distances among the ro-
bots. The goal is that each robot (starting from a dis-
tance away from the other robots) needs to navigate
the grid world to minimize the joint cost function,
that is, all of the robots wish to “meet” together at a
position by minimizing the average mutual distances.

3.2. Job sending rate control

It is very important to design an elastic application
that has the ability to adapt to the system perform-
ance. For example, in the case of the Internet, an ap-
plication that sends the video packets must adapt the
sending rate depending on the network conditions [2]
Or, in a certain manufacturing system, a machine that
produces a certain part must adapt its production rate
depending on the production rates of other machines
in order to increase the overall production utility.

To model this into a decision making problem,
consider a single FIFO queue Q and its single server
that processes a certain number of jobs stochastically
at a time (e.g., due to the load caused by other de-
mands, the failure or the idleness of the server ma-
chine, etc.), where we assume that all jobs have the
same processing time as the unit decision time, and
further assume that the queue has a finite capacity /
so that at most [ jobs can be found in the queue. If
there are B >0 number of jobs in the queue, the
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server processes be {l,...,B} jobs with }/B(b)
positive success probability with Zle}fB b)=1.1If

case of failure, all jobs remain in the queue. If B=0,
the server does not do anything.

There are K >1 applications that generate jobs
and the newly generated jobs from the applications
are merged into the single queue Q. Each application
i generates (independently from the other applica-
tions) jobs depending on its local state s; in a finite
setS;. We assume that there is a Markov chain that
describes the transition dynamics among states in S;
and denotes 5;[,%‘ as the transition probability from
state s;€ S; to s;eS;. At each state s;, it can
generate Q€ {0,...,;} jobs with ¢; <eco.

Let Q,, be the number of jobs generated from
the application i at time interval (¢t,f+1), and let B,
be the current queue size of Q, and let 77, be the
number of jobs processed over (¢,#+1). The queue
size (before task(s) is (are) processed) dynamics is
then expressed by the following equation:

K
B, = max min{B, +Zﬂi7,,1}—n,,0

i=1

Note that to apply the minimization operation in
the right side of the above equation, the server at the
queue @ must discard a certain number of jobs if add-
ing the newly generated jobs overloads the queue. We
assume that there exists a fixed rule to achieve this.
The event sequence is as follows. The queue starts in
an empty state. Each application generates jobs and
the jobs arrive into the queue. The server performs
overload control by discarding some jobs, if neces-
sary. The server then processes the jobs (stochasti-
cally).

We view this system as (k+1)- agents system
with K applications and one server at the queue. State
x=(x,....Xg,Xg,) i given such that for
i=L...,K, x;=5;€8; and xg =B, where B is
the number of the pending jobs in the queue. Action
a=(a,...,ax,ax,) 1is given such that for
i=1L...,K, =Q; and ag,€{0,,...,I} is the
number of jobs to be processed by the server. Note
that not all actions can be taken. The admissibility
depends on xg ;. It is straightforward to incorporate
an admissible action set shown in the model we dis-
cussed in Sectton 1.

Each job generation state transition dynamics is
independent of its local action and the next xj
local state is determined once the action a,...,dg
is fixed. Furthermore, given a state x and an action a
taken at x, the two local states for the server are
reachable. For ag, >0, xg, can reach xj
when the server processes a job successfully or

Xk. =Xg4 Wwhen the server fails. Therefore, the
state transition is defined such that for all y with suc-
cess, )

K .
P(ylx,a)=[]8; 7" (ags)
i=1
and for all y with failure,
K .
P(ylx,a)= H‘Sé,\, (- y%+ (ag,)).
i=1

The case for ag,; =0 is similarly defined. The
agents need to cooperate with each other to maximize
the average throughput, the average number of suc-
cessfully processed jobs, while simultaneously
minimizing the average queue size. It is obvious that
to achieve high throughput and low queue size, each
application must control the sending rate by proper
selection of the number of jobs to be processed. To
express the competing objectives into one reward
function, we introduce a trade-off parameter A >0
that represents a relative importance between the
throughput and the queue size. The (average immedi-
ate) reward function R is given such that

R(x,a)=

K
Yt age)| aga _l[mjn{xl(ﬂ + zai’l}_aKHJ

i=1

K
—Z(I—ZXK-H (aK_H)X[min{xK_H +Zai,l}—aK+lJ

i=1

- K
1fmm{xK+] +Zi:1a,1}—a,(+l >0, and

Y (agydagy if

. K .
rmn{xKH + zizla,l} —ag4; >0, and O otherwise.

We can simply extend the above example to a load
balancing problem. Consider now x>1 parallel
queues, making K +x agents with agents
K +1,...,K + k being the server at each queue. The
agents 1 through K, or applications, not only need to
control the sending rate but also need to determine
where to dispatch the generated jobs among the
queues. This decision certainly depends on the cur-
rent load of each queue and the service characteristic
of each queue.

3.3. Distributed database

Consider a set of simple searching systems or da-
tabase S; ={s],...,s,,} with m<eo for searching
agent i=1,...,K <. One component for a local
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state for agent i is s5;€ S;. If a query ¢; in a finite
set O, is imposed, agent i must determine whether
to process the query at the server s; or to pass the
query to the other servers in §;. Once agent i makes
the determination to pass the processing to a particu-
lar server in S;, the query can be passed into the
particular server deterministically or probabilistically
(it stays at the current server with a probability). We
assume that a document or necessary information for
each query term g; € Q;can be searched independ-
ently of each other. For example, g=1(q.9:.43)
with K=3 can be given such that ¢; is a term for
searching an image, ¢, for a sound, and g, for a
text to locate a relevant document.

The local state of agent i is given as
x; =<5;,9; >,5;€S; and ¢;€Q; and local action
set A; foragentiis S;. A global reward function is
given such that R(x,a) stands for “relevance” fac-
tor of the selected servers to a query g=1(qy,....qg)
in a coherent manner. For example, the relevance
factor can be related with the “query term frequency”
(the number of occurrences of the terms in a query g
in a document that a server indexes) with a hitting
factor that reflects the degree of matches between the
given query and the outputs of the searching process
from the selected servers. That is, even though the
searching process of each agent is independent, the
reward function expresses the joint relevance of the
jointly selected servers to the query q. For example, if
the query <Markov, decision, process> is given, once
particular servers are determined, the agent 1 will
search for the relevant documents to “Markov” and
the agent 2 will do the same for “decision” and the
agent 3 will do the same for “process”. However,
each agent needs to select its local server in a coop-
erative manner with the other agents such that the
overall outputs from the search are relevant to the
“Markov decision process”.

For our problem example, we assume that each

query g;€ Q;,i=1,...,K is generated with probabil-
ity A,(g;)>0 with ZqieQi/L(qi)zl , where the

value of A;(g;) is estimated from “historical” usage
statistics, from which we further assume that the
query ¢; is generated independently from the query

qjzi - Each Q; contains the empty query and with

the empty query, an agent must remain at the current
server.

With the problem description as above, the global
transition structure is factorial and each agent needs
to cooperate in order to maximize the global reward
function.

3.4. Admission control in multi-stations
Consider parallel multiple stations that need to p-
erform admission control for incoming calls to each

station. Each station i=1,2,...,K <o is associated
with an infinite buffer and is required to decide
whether to admit or to reject a newly arriving call
into the buffer. The call arrival process for each sta-
tion is described by the Markov Modulated Bernoulli
Process (MMBP) [9] such that for the station 7, there
is a finite number of traffic states in the set S; and
the transition dynamics between the traffic states is

governed by a Markov chain. We denote 5;:1,“%{ as

the probability of transitioning from state s5;€ §; to
s; for the MMBP model of the call arrival process at
the station i. At each state s; € S;, one call is gener-

ated with probability 4;(s;)>0. Once a call is ad-
mitted into the station £, each call departs the station i
with the same probability g after remaining for at

least one unit of decision time.

The departed call(s) from each (upstream) station
is (are) fed into a single infinite FIFO (downstream)
queue. If multiple calls are fed into the queue at the
same time, we assume that the calls from the station i
are queued before the calls from the station jif i< j.
The calls in the downstream queue are routed out to
certain network such that one call from each station,
if any, is routed out deterministically in FIFO manner.
The setup of the problem here can serve as a model
for systems arising in production networks, commu-
nication networks, etc.

Local state x; for the agent in the station i is
(n;,s;,¢;,,1;), where n; is the number of the current
calls (that are already admitted) at the (upstream)
station 7, and s; is the current traffic state of the
MMBP model for the call arrival process, and
¢ € {0,1} with O being a new arrival and 1 being no
arrival, and 7; is the number of the current calls at
the (downstream) queue from the station i. Local ac-
tion a; is either 1 for accept or O for reject.

The global transition structure is factorial. For
x =56, and  y =, s eLn) o, if
n=n+a@—d and 7 =max{n;+d-1,0} for

]

d=12,...,n;,then

P(y; 13,0 =8 LA (D@ + (1= A (s))A— )1
and O otherwise. The global (average) immediate re-
ward function is given such that

K K
R(x,a)=f[2ai]—§'g > P(ylx,a)(th'] ,
i=l

i=1 ye X

where f is an increasing positive function (the more
accepted calls, the more rewards) that represents a
global throughput utility, and g is an increasing posi-
tive function that represents a global queue size cost,
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and ¢>0 is a trade-off parameter between the
throughput utility and the queue size utility.

Each agent is required to cooperate in order to
maximize the average throughput utility and to
minimize the average queue size utility with a given
trade-off parameter ¢ at the single FIFO queue.

4. LOCALIZATION OF GLOBAL MDP

It is intuitively true that if all of the agents except
one select their policies and follow them, optimizing
the global average reward with those fixed policies
must be able to be concentrated on only when the
maximizing agent has not fixed its own policy. How-
ever, it is not trivial to show formally that this is the
case. In this section, we show this by the concept of
localization.

Given an agent / and for a set of selected autono-
mous local policies {7;eIl;: j=i} fr(lm the other
agents j#i, we define a constant g; such that
given xpe X,

* .
g; = max lim
Gieei H—oo

H-l
LE{Z R(x,,<m<x}),-.-,<9,-<xt>,...,zN<x,N)))},

H t=0
where x, = (x,],...,x,N ) and x/e X j denotes the
local state at time ¢ for agent j=1,...N.

From standard MDP theory, constraining the ac-
tion choices for agent j#i,j=1...,N by the
autonomous local policies 7;, under Assumption 1,
there exists a bounded function #; defined over X
that satisfies the following equation: for any
x=(0x,....,xy)E X,

g Fh (X xy ) =

max R(x,(7,(x)),....a;,.... Ty (xy )
aieA,-

>

yr€ Xk k=l,...N

| ) ERLICTIE TR ATCIN] LA (G o)t

j#ij=l,..N

[P (i 1. a,) 0

Trivially, for any «; € A;,

g;k + 7 (e xy)) 2
R(x’(ﬂ.l(xl)""’ai""’ﬂ.N(-xN)))

+ Y [BOiIx.a)x 2)

Y€ X k=1,..,N

[T 20176 B vy

j#i, j=1,...N

Let { p;(x),xe X ;¢ denote the stationary distribu-
tion of the Markov chain induced on the local state

space of agent j by autonomous local policy 7 ;.
Then, summing up both sides of Equation (2) with
respectto p;j#i, gives

g;-k+ Z l:Hpj(Xj)}hi((xl""’xN))

Xj#iexj J#

2 > T GHRxGmx),apse .y (x3)))

)Cj¢l'EXj J#Ei

o

ykEXk,k=1,...,N

[P (y; 1 x;,a;) %

H Pj(yj|xj’”j(xj)):|hi((yl""’yN))]

i, j=1,...N

> 3 IpiGH(R(x () a7ty Gy D)

Xj¢l~€Xj j#i

+ Y Y 11l x)P (v, 1 x,7;(x ;)]

Vo VirnIN xj:ti J#i
XP.(y; Ix,-,al-))h,-((yl,.--,yN))
= Z Hpj(x])(R(x,(ﬂ:l(xl),,al,..,ﬂ'N(xN)))

Xji J#

+ > Py ;.7 (x;)X

Yi€ X;
z [Hpj(yj)}”i(()ﬁww)w)) ,
Yjzi€X | J?i

3

where the last step follows from the invariance prop-
erty of the stationary distribution (see, e.g., [10, pg.
57): forany 7, eIl,,
Z Pr P g Vo s 1 (5 ) = o () -
XL € X k

Define an average value function defined over X,
from #; or projection of h; with respect to the sta-
tionary distributions p ; over X; of the selected

policies 7z; from the other agents j#i: for
X; € Xi y
,’_ll'(xi):: z Hpj(xj) hi((xl,...,xN)).
xj;tiexj j#l’

Similarly, define also an average reward function
with respectto z;:for x;€ X;, a;€ A,

Ei (xi,al-) =

> {Hpj(xj)}(le(x,(;zl(xl),...,a,.,...,;zN(xN)))

xj¢iexj J#
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Since (3) holds for any g; € 4;, it holds in particu-
lar for the action that maximizes the right-hand side
of (3),sofor x; € X;,

8 +h(x)

> max| R; (x;.a; )+ > Py 1 x,a)l (3) |
aieA,- ykEXk

Denoting an action that achieves the right hand
side of (1) as a;k , and summing up both sides over
the stationary distributions of p i JE (1) can be
rewritten as

g+ =R (%6 )+ Y ROil1x.a)k0O)

Xy

It trivially follows that for x; e X/,
81 +hi(x)

< max| R (x.a;)+ Z P(y; 15,0 (y;)
a,-eAi ykexk

Therefore, for x; € X;,

g +hi(x)

_ — %)

= max R,-(X,-,ai)'*' Z F(y; 1 x;,a)h (y;)
4 ke X

which we refer to as a localized version of Bellman's
optimality equation, since the equation involves only
X; and A;.

Now consider an MDP with X; A, ,F , and
R =R.. Under Assumption 1, for all x; € X;, there
exists a constant x and a bounded function ¢ de-

fined over X; for which
k+c(x)
(6)

= max Ri(xi,ai)+ Z P(y; 1 x;,a:)6(y;)
aieAi YkGXk

and if a constant x’ and a function ¢ satisfy (6),
then x’=x (see Theorem 8.4.3 in [18]). Notice that

* 1 .

g; and h; satisfy (6).

We summarize the localization concept below as a
theorem:

Theorem 1: Given 7;€TIl; and corresponding
{p;)} for all agents j#i, under Assumption I,
for M; =(X;,A;,F,R;) with R, =R;, there exists a
bounded function ¢ defined over X; and a con-
stant x such that for x; e X;,

k+¢(x;)
(7

= max Ri(xi’ai)+ Z R‘(yilxivai)g(yi)
ai€ A YeEXg

and any policy z; € Il; which, for each local state
x; € X;, prescribes an action that maximizes the right
hand side of (7) achieves gf with x= g? .

We remark that if we add the condition that

Y ex, PSR =0 10 (7), where p; is the sta-

tionary distribution of the Markov chain induced
from such a policy 7; for agent i as defined by the

theorem, then ¢ = l_zl from the uniqueness of ¢. As

a special case of R;, if each agent k is associated
with its local (bounded) reward function
R, : X, xA; >R and R(x,a)zszk(xk,ak) ,

_ ,,.
then  R(x,a;)=R;(x;,a,)+ Zj¢i,j=1,...,N v,

where l//”j is the average reward of following the
policy 7z; with respect to M;=(X;,A;,P;.R;) .

Note that in case there is no constraint on the action
choices across the agents, just solving the local MDP
independently and forming a composite global policy
provides an optimal joint policy for the global MDP.
This particular case provides an intuitive argument
for the results of the localization concept.

The localization theorem result is intuitively rea-
sonable but also somewhat surprising. Suppose that
an agent needs to maximize the global average re-
ward constrained for a given set of fixed autonomous
local policies of the other agents. If the joint state
transition structure is factorial, maximizing the local
average reward, defined with the projected reward
function with respect to the stationary distributions of
the fixed autonomous local policies of the other
agents, is equivalent to maximizing the (constrained)
original global average reward. Furthermore, there
exists an autonomous local policy for the agent i that

achieves this maximal reward g; . In other words,

one might expect that in order to achieve g? , a local

policy would depend on the states of the other agents.
However, by the above theorem, the agent need only
consider its own local state.

Iterative solution methods to obtain x and 7z

follow directly from the well-known average reward
value iteration and policy iteration procedures. We
briefly review the policy iteration. Agent i starts with

an arbitrary policy 7z € Il; and iterates the follow-

n
ing steps: at iteration n>0, agent i obtains y”™

and ¢" that satisfy the following: for x; € X;,
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y 46" (%)
zﬁi(xi’”in(xi))'i' PR ACAEN ACH) L CHN
ke Xy
where this step is called policy evaluation. Then a
policy z"*! such that for x e X;,

+1
N (%)

€argmax| R (x,a;)+ Y, By lx.a)¢"(y)
a;e A Yr€ Xp
is obtained, where this step is called policy improve-

ment. Eventually, 7'

converges to an optimal (in
the sense of Theorem 1) 7z; within a finite number

of iterations.

The localization naturally induces a simple distrib-
uted iterative algorithm that converges to a local op-
timal solution for the global MDP M.

4. A DISTRIBUTED ALGORITHM FOR A
LOCAL OPTIMAL SOLUTION

We describe the algorithm in a constructive way,
rather than give a pseudocode for it. Extending the
algorithm into more than two agents is straightfor-
ward.

We first assume that the global joint reward func-
tion R is known to both agents. In other words, this
information is given before the invocation of the al-
gorithm. Each agent 1 and 2 starts with its own initial

policy e I1, and Be IT1, . At the iteration
k=1, the agent 1(2) informs the agent 2(1) of
'S and  the stationary
P PE ™Y of oY) . Then the agent 1
solves the local MDP M = (X,,A,,B,Rf), where

k k- _
R Ga)= Y o A7 GDR (3,300, 87 (1))
An optimal policy for M 1" is o, Similarly, the

agent 2 solves the local MDP M f =(X 2,A2,P2,R§ ),
where

distribution

Ré‘ (xp,a3) =
lee Xl plk—l (‘xl )R('x]7x2’ax—1 (x] )7 az) . An Optlmal

policy for Mé‘ is ﬂk. Because at each iteration,

each agent determines the best local policy with re-
spect to the policy of the other agent, as the gradient
is the direction of the greatest local increase in a
given objective function, the underpinning idea is
similar to that of the gradient-ascent algorithm.

By the above construction, we first have the fol-
lowing fact: for k=2 and k=2m with

m=12,...,

g(ak’ﬁk—l) > g(ak—Z’ﬁk—l) > g(ak—z’ﬁk—ﬂ

> g(ak~4vﬁk—3) >..> g(a’2sﬂl) > g(ao,/ﬁ)‘
Similarly,

g(ak—]vﬂk) > g(ak_hﬂk_z) > g(ak—3,ﬁk—2)

> g(“k—3»/3k~4) >..> gl By > g(%’ﬁo)‘
That is, the performances of the pairs of the policies
of the agents 1 and 2 monotonically improve in a zig-
zag manner across the agents' views. We state this
property as a proposition.

Proposition 1: For k>3 and k=2m with
m=12,..., the following monotonicity holds:

g Pi-1) > g(“k-zﬁk—ﬂ and

g(ak—l B > g(ak—San—2)_

Furthermore, because for k>1,
g(ak Br-1) > g(a,ﬁk—l) for any cre ©,
and for k22,
g(ak—2’ﬂk—l) > g(a/ﬁz’ﬂ) for any e O,

the following holds:
Proposition 2: For k22 and k=2m with
m=12,...,

(@.f1)
(2.8

for any o€ O

for any fe ©,
(a.fyx—3)

(4.5

for any ore ©,

8
8
g(ak-ﬁk—l) >/ 8
g

for any fe ©,

(2.5

g for any fe ©,

Similarly, for k22 and k=2m with

m=12,...,

1.5
(@.f—2)
(@-3.5)
(&.fr-a)

for any fe O,
for any ore ©,

@15 > forany fe O,

g

oy 00 0g O

forany are ©,

g @) forany fe ©,

It is then immediately true that at the best case, at
the kth iteration with k22 and k=2m ,

m=12,.., we eliminate o(k(|A1|‘X‘|+\A2||X2|))

suboptimal policies from ©.
At each iteration k>3, the agent 1 checks the
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condition that

(@ fr-1) (% _2.5¢-3)

b4 =g
is true or not and the agent 2 checks the condition
that

-1.5) = (3. 5-2)

8 =8
is true or not. If both of the conditions are true, then
both agents discontinue their own parts of the algo-
rithm. Otherwise, both continue their communica-
tions and computations. This implicitly requires that
each agent must inform the other agent of the flag of
true or false, including the currently computed best
reactive local policy and the stationary distribution of
the policy. Then the question is if we ever have the
instance where both of the conditions are true. Be-
cause of the monotonicity and the finite number of
the (joint) policies in @, there exists an iteration that
both agents acknowledge the true cases. ‘

Even if both of the conditions are true, this does
not mean that the performance of the converged pol-
icy sets of the agent 1 and the agent 2 are equal and
either one of them is an optimal joint policy. This
makes the algorithm converge to a local optimal pol-
icy and we need to select one of the converged policy
sets of the agent 1 and the agent 2. Simply, we take
the set having the better performance.

Suppose that ]Aijzc and |Xl~|=D for all

i=1,...,N . As we discussed before, when we apply
the policy iteration algorithm to the global MDP,
even if we ignore the autonomous policy structure
condition, the time-complexity of solving the global
MDP is oc" .p?¥ ) for applying just one policy
improvement step. The policy iteration algorithm
2N
converges to an optimal joint policy in O(C" )
iterations at the worst case, making the total worst-
case time-complexity of solving the global MDP

2N
o -D*M .c¥" ). For our algorithm, if each
agent applies the policy iteration algorithm to his lo-
cal MDP, solving the local MDP takes O(C b Dz) at

the worst case with the communication cost of

O(D) . If our algorithm converged to an optimal joint

policy for the global MDP at the worst case, it would
p2N

have taken at most O(C b.p?.cV } 1terations.

Therefore, the worst-case time complexity of solving
the global MDP in a global manner can be alleviated
by our algorithm depending on the size of C, D and N.
Even though our algorithm converges to a local opti-
mal solution in theory, the algorithm had better serve
as a heuristic.

There are several published works that a policy ob-

tained from one-step policy improvement with a
“good” heuristic policy is near-optimal for various
problems (see, e.g., [6, 7, 13, 14, 17, 20]). Similarly,
each agent can start with a good heuristic policy
available for its local MDP or the given global MDP
and apply one-iteration of our algorithm to generate
an improved joint policy or apply k-iterations. Note
that in contrast to one-step policy improvement, at
the best case, each agent will eliminate the exponen-
tial number of suboptimal policies.

5. CONCLUSIONS

In this paper, we presented a novel concept of lo-
calization that can be used for breaking the curse of
dimensionality when solving factorial MDPs in a
multi-agents setting. A given global MDP is localized
for each agent such that each agent is required to
consider solving an MDP defined with only his local
parameters. Based on the localization concept, we
presented an iterative distributed algorithm for solv-
ing factorial MDPs. The overhead of the communica-
tion among agents and the complexity of solving
each localized MDP in the algorithm will not be large
if local state and action spaces are small. Furthermore,
the result obtained by the algorithm provides a useful
and meaningful global solution. The solution is an
autonomous joint policy, which is a local optimal
policy for the original MDP we want to solve.

The local optimality result of the proposed algo-
rithm can be salvaged by introducing a random re-
start, which is commonly used in several global op-
timum seeking algorithms. We can generate several
initial local policies at random and apply the algo-
rithm or we can generate random local policies once
the algorithm converges to a local optimal solution.
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