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Rule-Based Fuzzy Polynomial
Neural Networks in Modeling Software Process Data

Byoung-Jun Park, Dong-Yoon Lee and Sung-Kwun Oh

Abstract: Experimental software datasets describing software projects in terms of their com-
plexity and development time have been the subject of intensive modeling. A number of various
modeling methodologies and modeling designs have been proposed including such approaches
as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the con-
cept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling archi-
tecture and discuss its comprehensive design methodology. The development of the RFPNN
dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural net-
works, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage
of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based
structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We dis-
cuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In
particular, it is shown that this network exhibits a dynamic structure. The experimental results
include well-known software data such as the NASA dataset concerning software cost estima-
tion and the one describing software modules of the Medical Imaging System (MIS).

Keywords: Rule-based fuzzy polynomial neural networks, rule-based fuzzy neural networks,
polynomial neural networks, computational intelligence, genetic algorithms, design methodol-
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ogy, software data.

1. INTRODUCTION

Empirical studies in software engineering employ
experimental data to gain insight into the software
development process and assess its quality. Data con-
cerning software products and software processes are
crucial to their better understanding and, in the sequel,
developing effective ways of producing high quality
software. However, data have no meaning per se and
their semantics arise in the context of a conceptual
model of the phenomenon under study [1]. The analy-
sis of software data is challenging in many different
ways.
¢ Software engineering models are not governed by

any law of physics meaning that we cannot rely on
and exploit assumptions that are pertinent to well-
known models such as linear regression. The as-
sumption of continuity of software processes and
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quality of software products is also at stake. It is
evident that software is not continuous, namely
small changes in one variable may cause significant
changes in the performance of the system or cause
the system to totally coilapse;

¢ The amount of experimental data in software engi-
neering is usually quite limited. This calls for a thor-
ough analysis and prudent validation of the models
especially when it comes to their approximation ca-
pabilities;

e The origin of software data comes with their inher-
ent variability. This variability calls for models with
a high level of flexibility. Ideally, we would antici-
pate models containing solid mechanisms of adap-
tivity (learning).

Yet, the mechanism describing the software devel-
opment process is either insufficiently understood or
becomes too complicated to allow an exact model to be
postulated from the theory. Bearing these in mind, we
are vitally interested in the development of adaptive
and highly nonlinear models that are capable of han-
dling efficacies of software processes. This calls for
models that are anchored in the framework of fuzzy
sets and neural networks. In particular, we are con-
cerned with the hybridization of these two technologies
giving rise to so-called fuzzy neuvral network systems.

Moreover, efficient modeling techniques should al-
low for the selection of pertinent variables and the
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formation of highly representative datasets. The mod-
els should be able to take advantage of the existing
domain knowledge (such as a prior experience of
human observers or operators) and augment (cali-
brate) it by available numeric data to form a coherent
data-knowledge modeling entity. Most lately the om-
nipresent modeling tendency is the one that exploits
techniques of Computational Intelligence (CI) by em-
bracing fuzzy modeling, neurocomputing, and genetic
optimization [2-6].

In this study, we develop a hybrid modeling archi-
tecture, called the Rule-based Fuzzy Polynomial Neu-
ral Networks (RFPNN). In a nutshell, RFPNN is
composed of two main substructures, namely a rule-
based fuzzy neural networks (RFNN) and a polyno-
mial neural networks (PNN). From the standpoint of
rule-based architectures, one can regard the RFNN as
an implementation of the antecedent part of the rules
while the consequents (conclusion parts) are realized
with the aid of PNN. The role of the RFNN based on
fuzzy inference and the Back-Propagation (BP) algo-
rithm is to interact with input data and granulate the
corresponding input spaces (viz. converting the nu-
meric data into representations at the level of fuzzy
sets). The role of the PNN is to carry out nonlinear
transformation at the level of the fuzzy sets (and cor-
responding membership grades) formed at the level of
RFENN. The PNN, which has a flexible and versatile
structure [6], is constructed on the basis of a Group
Method of Data Handling (GMDH [8]). In this net-
work, the number of layers and the number of nodes
in each layer are not predetermined (unlike in most
neural-networks) but can be generated dynamically
through some growth process. The number of the in-
put variables used in a partial description (PD) is ex-
tended and the order of regression polynomial is also
made higher to represent other types of nonlinearities.
In particular, the number of nodes in each layer of the
PNN architecture can be modified and new modes
can be added, if required. To assess the performance
of the proposed model, we exploit the well-known
NASA dataset [13] and Medical Imaging System
(MIS) [16,17] widely used in software engineering.

2. THE ARCHITECTURE AND DEVELOP-
MENT OF THE RFPNN

In this section, we elaborate on the architecture and
design process of the RFPNN. These networks
emerge as a synergy between two other general con-
structs such as RFNN and PNN [6]. First, we briefly
discuss these two classes of models by underlining
their profound features and afterwards demonstrate
how a synergy develops between them.

2.1. Rule-based fuzzy neural networks
The premise part of the RFPNN is constructed with
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the aid of RFNN. We use fuzzy space partitioning in
terms of all variables based on the fuzzy relation
based approach. Let us consider an extension of the
network by considering the fuzzy partition realized in
terms of fuzzy relations. The fuzzy partitions formed
for the all variables lead us to the topology visualized
in Fig. 1. The RFNN structure shows one possible
connection point with the rest of the model for com-
bination with PNN. The location of this point implies
the character of the network (both in terms of its
flexibility and learning capabilities). Note that the
connection point allows for perception of each lin-
guistic manifestation of the original variables (viz.
these variables are transformed by fuzzy sets and
normalized). Fig. 1 illustrates the architecture of such
RFNN in the case of two inputs and a single output,
where each input assumes three membership func-
tions. The “circles” denote units of the RFNN and the
neuron denoted by [] indicates a Cartesian product.
The outputs of these neurons are taken as a product of
all the incoming signals. The “N” identifies a nor-
malization procedure applied to the outputs taken as a
product of membership grades. The “2.” neuron is
described by a linear sum.

Making use of the language of the rule-based sys-
tems, the structure translates into the following col-
lection of rules:

Rl:If x, is Ay and -+ x; is Ay then y =w,

R :If X, is Ay and - x; is Ay then y, =w;

R':If x is A, and - x, is A, then y, =w,

(D
The fuzzy rules in (1) constitute an overall network

of the RFNN as shown in Fig. 1. The output f; of each
node generates a final output ¥ of the form.

Layer 3 Layer 4

Layer 2 H; H; W

Fig. 1. RFNN structure in the type of fuzzy partition
realized by fuzzy relations.
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The learning algorithm in RFNN is realized by ad-
justing connection weights w; of the neurons and as
such it follows a standard Back-Propagation (BP)
algorithm. In this study, we use two measures (per-
formance indexes).

¢ The use of the Euclidean error as a performance
measure.

_ A N2
Ep - (y]) - yp) s (3)
where E, is an error for the p-th data, y » is the p-

th target output data and §, stands for the p-th ac-

tual output of the model for this specific data point.
For N input-output data pairs, an overall (global) per-
formance index comes as a sum of the errors.
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is defined as:
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As far as learning is concerned, the connections
change as follows:

w(new) = w(old) + Aw , N

where the updated formula follows the gradient de-
scent method
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Each part of right side in (8) is expressed in the
form
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Therefore, Aw; summarizes as follows:

Aw; = 77-%— for y,,Z)A)p’

! (11)
A"Vi-—_ni for yp<j\)p7

p

with 77 being a positive learning rate.

Quite commonly to accelerate convergence, a mo-
mentum term is added to the learning expression. By
combining (11) and a momentum term, we have

Awi: 'ul +C((W(t) W(t_l)) for ypZy]?
)’p
Aw, =-1 f’ +oa(w () —wi(t=1) for y,( ¥,
14
(12)

Here the momentum coefficient, ¢, is constrained to
the unit interval.

2.2. A genetic optimization of RFNN

Genetic algorithms (GAs [9]) has proven to be use-
ful in the optimization of such problems because of
their ability to efficiently use historical information to
obtain new solutions with enhanced performance and
the global nature of search supported there. GAs is
also theoretically and empirically proven to support
robust searches in complex search spaces. Moreover,
they do not become trapped in local minima as op-
posed to gradient decent techniques being quite sus-
ceptible to this shortcoming. GAs is a stochastic
search technique based on the principles of evolution,
natural selection, and genetic recombination by simu-
lating “survival of the fittest” in a population of po-
tential solutions (individuals) to the problem at hand.
GAs are capable of globally exploring a solution
space, pursuing potentially fruitful paths while also
examining random points to reduce the likelihood of
setting for a local optimum. The main features of ge-
netic algorithms concern individuals viewed as
strings,  population-based  optimization  (search
through the genotype space) and stochastic search
mechanism (such as selection and crossover). A fit-
ness function (or fitness, for short) used in genetic
optimization is a vehicle to evaluate the performance
of a given individual (string). The search of the solu-
tion space is completed with the aid of several genetic
operators. There are three basic genetic operators
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used in any GAs - supported searches that are repro- Table 1. Types of regression polynomial.

duction, crossover, and mutation. Reproduction is a No. of

process in which the mating pool for the next genera- Inputs

tion is chosen. Individual strings are copied into the Order of 2 3 4
mating pool according to their fitness function values. the polynomial

Crossover usually proceeds in two steps. First, mem- 1 (Tvoe 1 Bil Tril Tetrali
bers from the mating pool are mated at random. Sec- (Type 1) 1 1near r% near | “etralinear
ond, each pair of strings undergoes crossover as fol- 2 (Type 2) Biquad- | Triquad- | Tetraquad-
lows: a position [ along the string is selected uni- T |mtie-l ratic-1 ratic-1
formly at random from the interval [1, [-1], where [ is 2 (Type 3) quuad- Trlguad— Tet.raquad-
the length of the string. Two new strings are created ratic-2 ratic-2 ratic-2

by swapping all characters between positions k and /.
Mutation is a random alteration of the value of a
string position. In a binary coding, mutation means
changing a zero to a one or vice versa. Mutation oc-
curs with small probability. Those operators, com-
bined with the proper definition of the fitness func-
tion, constitute the main body of the genetic computa-
tion.

In order to enhance the learning of the RFPNN and
augment its performance, we use genetic algorithms
to adjust learning rate, momentum coefficient and the
parameters of the membership functions of the ante-
cedents of the rules. Here, GAs use the binary type
serial method, roulette-wheel as the selection operator,
one-point crossover, and an invert operation in the
mutation operator.

2.3 Polynomial neural networks

We use PNN in the consequence structure of the
RFPNN. Each neuron of the network realizes a poly-
nomial type of partial description (PD) of the map-
ping between input and output variables. The struc-
ture of the PNN is not fixed in advance but becomes
dynamically organized during the growth process. In
this sense, PNN is a self-organizing network. The
PNN algorithm based on the GMDH method can
produce an optimal nonlinear system by selecting
significant input variables and forming various types
of polynomials. The GMDH is used in selecting the
best ones in PDs according to a discrimination crite-
rion. Successive layers of the RFPNN are generated
until we reach a structure of the best performance.
The input-output relation formed by the PNN algo-
rithm can be described in the following way:

yzf(x]axz""yxn)‘ (13)
The estimated output y of the actual output y is

)A7=f(x1,x2,~--,xn)
= +ch1xkl + z Cr1k2 %K1 %2 (14)
k1 klk2
+ z Crik 263 %K1 XK 2 %k3 T
k1k2k3

where ¢y s are the coefficients of the model to be op-
timized.

The following types of polynomials are used

e Bilinear = ¢y +¢jx; + ¢y x5

¢ Biquadratic-1 = Bilinear+ c3x12 + c4x§ + C5x Xy
» Biquadratic-2 = Bilinear +c3x;x,

A

To obtain the estimate y, we construct a PD for

each pair of independent variables occurring in the
problem. PDs use regression polynomials, refer to
Table 1. Next, we determine the coefficients of the
PD through the standard least squares error (LSE)
method. The optimal structure of the model is deter-
mined stepwise: we form layers of PDs operating on
pairs of variables and then select only the best ones.
Once the final layer of the structure has been chosen,
the node characterized by the best performance is
selected as the output node and all other nodes in this
layer are removed. Furthermore, all the nodes at the
previous layers that do not affect this output node are
also eliminated. The removal is carried out by tracing
the dataflow back to the previous layers.

Depending on the number of the input variables as
shown below, two types of generic PNN architectures
are discussed. The structure of PNN is selected on the
basis of the number of input variables and the order
of PD in each layer. We distinguish between two
categories of the PNN structures referring to them as
basic and modified PNNs. In the sequel, each cate-
gory comes with two cases, see also Fig. 2.

The basic and modified PNN architectures are
shown in Fig. 2, where z;(Case 2) in the 2™ layer or
higher denotes that the polynomial order of the PD of
each node has a different or modified type in com-
parison with z; of the I* layer.

In the advanced type shown in Fig. 2, the “NOP”
node means the A" node of the current layer that is
the same as the node of the corresponding previous
layer (NOP denotes no operation). An arrow to the
NOP node is used to show that the corresponding
identical node moves from the previous layer to the
current layer.

2.4. RFPNN topologies: Combination of RFNN and
PNN.
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Premise part(NFN)

Layer 2 Layer 4

" La 3
» Layer ll dycr l Layer 3 Layfr ! 0
" )L f' r-‘ =

Generic Type |,

z,=ﬂxp,xq) - case |

z'=f ’(,rp,xq) -case 2

zl:ﬂxp) - case |

Partial Description
(Polynomial Function)

z[':f’(xp) - case 2

(a) Basic RFPNN architecture.

Premise part(NFN)

[ [ L
N Layer 2 Layerd
Layer ll Luycr3 l LayerS Lay;r | <
w f' o 7 14D, Layer
e
<o DD §
>
Generic Type

25 - 1
Z; f(xp.xq,x,) case

Partial Description
(Polynomiat Function) [

;y’:f’(x,,,,rq,\") - case 2

4’/[[’ 4’1['

:,=ﬂxp) -case |

:,’:f’(x”) - case 2

(b) Modified RFPNN architecture.

Fig. 2. Configuration of RFPNN architecture insert a line.

The RFPNN is an architecture combined with the
RFNN and PNN as shown in Fig. 2. These networks
result as a synergy between two other general con-
structs such as RFNN and PNN. The RFPNN distin-
guish between two kinds of architectures, namely
basic and modified architectures. Moreover, for each
architecture of the RFPNN we identify two cases.

(a) Basic architecture — the number of input variables
of PDs of PNN is the same in every layer.

(b) Modified architecture — the number of input vari-
ables of PDs of PNN differs across the layers.

Case 1: The polynomial order of PDs of PNN is
the same in every layer.

Case 2: The polynomial order of PDs in the 2™
layer or higher of PNN has a different or modi-
fied type in comparison with one of the PDs
existing in the 1 layer.

As mentioned above, the topologies of the RFPNN
depend on those of the PNN used for the consequence
part of RFPNN.

The RFPNN architecture is combined with the
RFNN and PNN as shown in Fig. 2. Let us recall that
the RFNN is constructed with the aid of the space
partitioning realized by fuzzy relations. We also iden-
tify two types as the following:
® Generic type of RFPNN; Combination of the RFNN

and the generic PNN; and,

e Advanced type of RFPNN; Combination of the

RFNN and the advanced PNN.

2.5. The algorithmic framework of RFPNN

The design procedure for each layer in the premise
and the consequence of RFPNN is as follows. We
discuss the architecture in detail by considering the
functionality of the individual layers (refer to Figs. 1
and 2).

The premise of REPNN : RFNN

Layer 1: Distributing the signals to the nodes in
the next layer as an input layer.

Layer 2: Computing activation degrees of linguis-
tic labels (fuzzy sets; small, large, etc.).

Layer 3: Computing fitness of premise rule: Every
node in this layer is a fixed node labeled ], whose
output is the product of all the incoming signals.

M = A X Up (X)), A, B=small large, etc. (15)

A node in this layer represents one fuzzy rule and
each node output represents the firing strength of a
rule.

Layer 4: Normalization of a degree of activation
(firing) of the rule.

A= (16)

where # is number of rules.
Layer 5: Multiplying a normalized activation de-
gree of the rule by connection weight.
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fi=mxw =t (17)

Z H;
i=l

where f; is given as the input variable of the PNN,
which is the consequence structure of RFPNN.

Layer 6: Computing output of RFNN: The output
in the 6™ layer of the RFNN is inferred by the center
of gravity method.

= fi=Xm =Yy

The consequence of RFPNN : PNN

Step 1: Configuration of input variables: x;=fi,
x>=f2,", Xo=f; (n=i, I: rule number).

Step 2: Formation of a PNN structure: We select
input variables and establish the order of PDs.

Step 3: Estimation of the coefficients of the PDs:
The vector of coefficients of the PD’s(C;) in each
layer is produced by the standard least-squares
method and expressed in the form.

_xT x.1xT
Cj—(XJ XJ) XJY, (19)

where j denotes node number. This procedure is im-
plemented repeatedly for all nodes of the layer and
also for all layers in the consequence part of the
RFPNN.

Step 4: Choose PDs in case that the training and
testing dataset is taken into consideration: Each PD is
constructed and evaluated using the training and test-
ing dataset, respectively. Then we compare the values
of the performance index and select PDs using an
aggregate performance index with a sound balance
between approximation and prediction capabilities.
We may use i) the predetermined number W of the
PDs (width of the layer) or ii) all of them whose per-
formance index is lower than a certain prespecified
value. Method (ii) in particular uses the threshold
criterion 6 to select the node with the best perform-
ance in each layer.

=F

min

+d, 20)

where @is a new value of the criterion, J'is a positive
constant (increment) and E,;, denotes the perform-
ance index with the smallest value obtained in each
layer.

Step 5: Termination condition: We take into con-
sideration a stopping condition (E,,;, = E,,;,+) for bet-
ter performance and the number of iterations (size of
the network) predetermined by the designer. Where
E,;, is a minimal identification error at the current
layer while E,;: denotes a minimal identification
error in the previous layer.

Step 6: Determination of new input variables for
the next layer: The outputs of the preserved PDs serve
as new inputs to the next layer. In other words, we set
X1i=21i» X2=22j, ' Xwi=Zwi- The consequence part of
RFPNN is repeated in steps 3-6.

2.6. Model selection

Our model selection procedure is based on seeking
an acceptable compromise between training and gen-
eralization errors. The main performance measure
that we use in this paper is the mean magnitude of
relative error (MMRE) of (4). For evaluation of gen-
eralization ability, many estimates have been pro-
posed in the available literature; the most popular
ones being the holdout estimate and the k-fold cross-
validation estimate [10]. The holdout estimate is ob-
tained by partitioning the dataset into two mutually
exclusive subsets called training and testing sets. The
error estimate on the testing set is used to assess gen-
eralization ability. On the other hand, the k-fold cross-
validation estimate is obtained by a sample reuse
technique. The dataset is divided into k mutually ex-
clusive subsets of almost equal size, k-1 subsets are
used for training, and the k" is used for prediction.
This process is repeated k times, each employing a
different subset for prediction.

When k is equal to data size, it is called leave-one-
out cross-validation (LOOCV) estimate. In this study,
we employ the LOOCV estimate of generalization
error because of two reasons. First, it possesses sound
mathematical properties [11]. Second, it seems to be
particularly suited for software engineering applica-
tions where the best available data are relatively small
sets [12]. Thus, our model selection is based on the
analysis of LOOCV estimate of generalization error
for RFPNN models.

3. EXPERINENTAL STUDIES

In this section, we illustrate the development of the
RFPNN and show its performance for well-known
and widely used datasets in software engineering. The
first one is the NASA dataset [13]. The second one is
the Medical Imaging System (MIS) [16].

3.1. NASA software data

The experimental studies are concerned with a
well-known software effort dataset from NASA [13].
The dataset consists of two independent variables,
viz., Developed Lines of Code (DL) and Methodol-
ogy (ME), and one dependent variable, viz., Effort
(Y). DL is in KLOC and Y is in man-months. Here,
ME is a composite measure of methodologies em-
ployed in this NASA software environment. The data-
set is shown in Fig. 3.

In the following, we develop software effort esti-
mation models for two collections of independent
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variables, i.e., DL and (DL, ME).

3.1.1 Results of RENN modeling

According to RENN structures, the identification
errors of PI and E_PI are shown below in Table 2.
Where PI is a performance index for the training
dataset and E_PI concerns performance index for the
testing dataset using LOOCV. GAs help optimize
learning rate, momentum coefficient, and the parame-
ters of the membership functions. GAs was run for
100 generations with a population of 60 individuals.
Each string was 10 bits long. The crossover rate was

set to 0.6 and probability of mutation was equal to 0.1.

In the RFNN structure of Table 2, two membership
functions for each input variable are used. The fuzzy
rules with 1 input are conveyed by (21). (22) repre-
sents 4 fuzzy rules for RFNN with 2 inputs.

Rl:If DL is A“ then Y1 =M1

21
R%:If DL is Ay then y, = @b
: 12 Y2 =W

R':If DL is Ay and ME is Ay then y, =w
R*:If DL is A, and ME is Ay, then y,=w,
R*:If DL is A, and ME is Ay then y;=wy

R*:If DL is A, and ME is Ay, then y;=wy
(22)
The tuned parameters related to the two member-

ship functions of each variable are showed in Table 3
and Fg. 4.

Effort

Fig. 3. The dataset of the NASA software project.

Table 2. Performance index of the RFNN: a system
with both a single input and dual input.

. 2 system inputs
1 system input(DL) (DL, ME)
PI E_PI PI E_PI
RENN | 0.2870 0.2990 0.2115 0.2415

Table 3. Connection weights of RFNN.

No. of inputs Connection weights of RFNN
. W) 4.2744
t
inpu W) 54.893
Nl 4.9874
2 inputs ) -5.9834
w3 68.757
Wy 7.9251
All All
1.6;95 39.;12
DL
(a) 1 input
'L A, Ay Ap
1.932 47.243 27.644 49..:276
DL ME

(b) 2 inputs

Fig. 4. Tuned parameters of membership functions of
each input variable.

3.1.2 Results of RFPNN modeling

We now present the details of the RFPNN model-
ing using the methodology described in the previous
section II.

(a) In case of 1 system input (DL)

The goal is to seek a parsimonious model that pro-
vides a suitable fit to the DL and Y data of NASA
software project data while exhibiting solid generali-
zation capability. Table 4 summarizes the results of
the preferred architectures according to advanced
type and architecture (basic or modified).

Table 4. Performance index of RFPNN (System input:

DL).
Premise part; {Consequence part;
RFNN PNN
RFPNN PI | E_PI
No. of] Connec- | No. of inputs Laver
MFs | tion & type Y
Case 5 1 2 inputs 1 10.2486|1.2356
el 1 Type 2 0.1801(0.2775
3
A |Case ) . 2inputs | 1 ]0.2479|0.3166
& 2 Type 3-2 | 2 10.1748{0.1850
&
2 Case 5 1 223 inputs | 1 |0.2486|1.2356
g 1 Type2 | 2 {0.1797/0.4720
3|3
< | & [Case ) | 2-3inputs | 1 |0.2479|0.3166
“28 2 Type 3-2 | 2 }0.2285/0.2866
Case 2 2 1-2 inputs 1 10.4719|0.5344
2 Type 1-2 | 2 [0.2479]0.5344
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In light of the values reported there, the basic
RFPNN in Case 2 is the preferred architecture of the
network in the advanced type and its detailed topol-
ogy is visualized in Fig. 5. The values of the perform-
ance index of the RFNN optimized by GAs are
PI=0.2870 and E_PI=0.2990. When considering both
PI and E_PI, the minimal value of the performance
index, PI=0.1748 and E_PI=0.1850 are obtained by
using Type 3 in the 1% layer and Type 2 in the 2™
layer or higher (Type 3—2) with 2 node inputs.

The form of each Type is shown in Table 1. Fig. 5
shows an optimal architecture in the advanced type of
the RFPNN that is composed of RFNN and PNN with
2 inputs-Type 3—2 topology. The way in which
learning has been realized is shown in Fig. 6 where
training errors (performance index) are illustrated. In

Fig. 5, ©

layer used for the generation of the output ¥, is

is the A" node of each corresponding

the A™ node of each corresponding layer used for the
generation of the output and indicates the optimal
node in each layer. The parameters and connection
weights of the premise part of RFPNN are shown in
Fig. 4 and Table 3 of Section 3.1.1.

(b) In case of 2 system inputs (DL, ME)

Now we develop an effort estimation model based
on two independent variables DL and ME. The per-
formance index of RFPNN is shown in Table 5.

Table 5 summarizes the values of the performance
index for the RFPNN with 2 system inputs. In Table 5,
the modified RFPNN in Case 2 is the preferred archi-
tecture of the network in the generic or the advanced

. B
OB, )
DL —o
O—@AEON G
§=PNN(f, f,), where fi=f -w; (i=12)
Fig. 5. The optimal topology of the advanced and
basic RFPNN in Case 2 (2 node inputs and
Type 3—52).

1
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RFNN PNN

Training ereors
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54
@
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L L L '
o 100 200 300 400 590 1 2
lreration Layer

Fig. 6. Learning procedure of the advanced and basic
RFPNN in Case 2 (2 node inputs and Type

352).

advanced type, respectively. An optimal architecture
of the RFPNN in the advanced type is visualized in
Fig. 7. In Fig. 7, the RFNN part of the network uses
two membership functions for each input variable, so
the architecture has 4 rules. The values of the per-
formance index of the RFNN optimized by GAs are
0.2115 for the training data and 0.2415 for the testing
data. The PNN part of the networks is constructed by
using Type 2 with 3 node inputs in the 1* layer and
Type 3 with 4 node inputs in the 2" layer (3—4
inputs and Type 2—3). The final results of the
RFPNN topology are PI = 0.0231 and E_PI = 0.0252.
Fig. 8 illustrates the performance of the obtained net-
works.

Table 6 contains a comparative analysis including
the previous model introduced in the literature [13].
The comparative analysis reveals that the RFPNN
comes with high accuracy and improved prediction
(generalization) capabilities.

Table 5. Performance index of RFPNN (System
inputs: DL, ME).

Premise; Consequence;
RENN PNN
PI. | EPI
No. of inputs
No. of MFs & type Layer

252 2 inputs 1 ]0.1369 | 0.1130

! Type 3 2 |0.1085 | 0.0600
4

217 |Case 5 2 inputs 1 [0.1369 | 0.1130

= 2 X Type 3-2 0.1048 | 0.0621

2

S| lCase 2-3inputs | 1 |0.1369 | 0.1130

3|8 1 2 Type3 | 2 |0.0893 | 0.0527
5

S |Case o 2-3inputs | 1 |0.1369 | 0.1130

2 Type3~2 | 2 |0.0493 | 0.0565

Case 2% 3 inputs 1 {0.0695 | 0.1890

ol 1 Type 2 2 10.0420 | 0.0417
S

&| % (Case -~ 3 inputs 1 ]0.0695 | 0.1890

= 2 Type2-3 | 2 |0.0390 | 0.0429

5]

j:; g (Case] ., 3~4inputs | 1 |0.0695 |0.1890

SlE| ! Type 2 2 10.0189 | 0.0397
o]

= [Case 55 3-4dinputs | 1 | 0.0695 | 0.1890

2 Type2~3 | 2 |0.02310.0252

9=PNN(]“1, f2, f3, f4),WhCrc
fi=m-w (i=12,34)
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Fig. 7. The optimal topology of the advanced and
modified RFPNN in Case 2 (3—4 node inputs
and Type 2—3).

1
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Fig. 8. Learning procedure of the advanced and
modified RFPNN in Case 2 (3—4 node inputs,
and Type 2—3).

Table 6. Comparison of identification error with
previous modeling methods.

randomly partitions the dataset to produce two data-
sets. The first 60% dataset is used for fitting the mod-
els. The remaining 40% dataset, the testing dataset,
provides for quantifying the predictive quality of the
fitted models.

Using the MIS dataset, the regression equation is
obtained as follows.

Changes =~1.8371+0.14097 - LOC - 0.14115-CL
—0.0026487 - TChar + 0.10312 - TComm
+0.0019233- MChar+0.0086053 - DChar  (23)

—0.024508 - N +0.16458 - N —0.20678 - N
+0.16353- V(G) - 0.95354 - BW

This simple model comes with the value of
PI=40.056 and E_PI=36.322 for 11 system inputs. We
will be using this as a reference point when discuss-
ing the RFPNN proposed in this paper.

For the RFNN structures, the identification errors
of PI and E_PI are shown below in Table 7. GAs help
optimize learning rate, momentum coefficient, and
the parameters of the membership functions.

In the RENN structure, two membership functions

T Gener- for each input variable are used. As such, the RENN
Model S;ystern Trauimg aliztion structure is represented by 16 fuzzy rules for the 4
input | (PD (E_PI) system inputs.
Shin and Goel’s DL | 0.1579 | 0.1870 Table 7. Performance index of the RENN.
RBF model [13] II\D/II]‘E’ 0.0870 | 0.1907 Model No. of system PI E Pl
inputs
B’:SZag‘;Z‘i’z DL | 0.1748 | 0.1850 Regression 11 40.056 | 36.322
Generic’ RFNN 4 50.920 39.215
Our model| Modified, | D& | 0.0493 | 0.0565
(RFPNN) | (ace 2 ME . ,
Advanced Table 8 . Performance index of RFPNN with 4 system
Modified, | P | 00231 | 0.0252 ik g
Case 2 Premise part;] Consequence part;
RFNN PNN
3.2. Medical imaging system RFPNN No. of in- Pl | E_PI
We consider a Medical Imaging System (MIS [16]) No.of MFs| puts Layer
subset of 390 modules written in Pascal and FOR- & type
TRAN for modeling. These modules consist of ap-
proximately 40,000 lines of code. To design an opti- IXINIXD 3 inputs 1 140.033] 25.5
mal model from the MIS, we utilize 11 system input Type 2 2 138.972]20.26
variables such as, LOC, CL, TChar, TComm, MChar,
DChar, N, N, Np, V(G), and BW. And as an output é %) 3 inputs 1 150.671|25.005
variable, “Changes” is used. Also, we use 4 system || .o > Type 3 2 |40.558|21.223
inputs [TComm, MChar, DChar, N] from among the 'g |’§ 2
11 system inputs. Here 4 system inputs are selected 5 © IXIXIND 4 inputs 1 [39.179|23.864
from structure identification by the GMDH method. O Type 2 2 129.360119.299
When applying any modeling technique, an as-
sessment of predictive quality is important. Data 4 inputs 1 38.668123.041
splitting is a modeling technique that is often applied DD pe3 |2 (3520516611
to test predictive quality. Applying this technique, one




330 International Journal of Control, Automation, and Systems Vol. 1, No. 3, September 2003

TChmm

MChar

DChar

Fig. 9. The topology of the generic and basic RFPNN
in Case 1 (4 node inputs and Type 2).

Table 9. Comparison of identification error with
previous modeling methods.

Model No.of | p; | Epr
inputs
Regression model 11 40.056 | 36.322
Generic
Our model e
(RFPNN) Modified, 4 29.36 19.299
Case 1

Table 8 summarizes the results of the preferred ar-
chitectures according to the RFPNN. Here we select
the basic RFPNN in Case 1 for the 4 inputs-Type 2,
and its detailed topology is visualized in Fig. 9.

Table 9 contains a comparative analysis including
the previous model. Regression models are con-
structed by way of a linear equation. The comparative
analysis reveals that the RFPNN comes with high
accuracy and improved prediction (generalization)
capabilities.

4. CONCLUSIONS

In this study, we have introduced a class of RFPNN
regarded as a modeling vehicle for nonlinear and
complex systems. We have studied its properties,
come up with a detailed design procedure and used
these networks to model a well-known NASA dataset
and MIS dataset that are experimental data widely
used in software engineering. The RFPNN is con-
structed by combining RFNN with PNN. In this sense,
we have constructed a coherent platform in which all
components of the CI are fully utilized. The model is
inherently dynamic - the use of the PNN, which
comes with a highly versatile architecture, is essential
to the process of “growing” the network by expand-
ing its depth. A comprehensive design procedure was
developed.
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