In this paper, we utilize Nevanlinna theory to study the existence and forms of solutions for quadratic trinomial complex partial differential-difference equations of the form aF2 + 2ωFG + bG2 = exp(g), where ab ≠ 0, ω ∈ ℂ with ω2 ≠ 0, ab and g is a polynomial in ℂn. In order to achieve a comprehensive and thorough analysis, we study the characteristics of solutions in two specific cases: one when ω2 ≠ 0, ab and the other when ω = 0. Because polynomials in several complex variables may exhibit periodic behavior, a property that differs from polynomials in single complex variables, our study of finding solutions of equations in ℂn is significant. The main results of the paper improved several known results in ℂn for n ≥ 2. Additionally, the corollaries generalize results of Xu et al. [Rocky Mountain J. Math. 52(6) (2022), 2169-2187] for trinomial equations with arbitrary coefficients in ℂn. Finally, we provide examples that endorse the validity of the conclusions drawn from the main results and their related remarks.