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CASCADES OF TORIC LOG DEL PEZZO SURFACES

OF PICARD NUMBER ONE

DongSeon Hwang

Abstract. We classify toric log del Pezzo surfaces of Picard number one

by introducing the notion, cascades. As an application, we show that if
such a surface admits a Kähler–Einstein metric, then it should admit a

special cascade and it satisfies the equality of the orbifold Bogomolov–
Miyaoka–Yau inequality, i.e., K2 = 3eorb. Moreover, we provide an algo-

rithm to compute a toric log del Pezzo surfaces of Picard number one for

a given input of singularity types.

1. Introduction

A normal projective surface S with quotient singularities is called a log del
Pezzo surface if its anticanonical divisor −KS is an ample Q-Cartier divisor.
A lot of work has been devoted to classify log del Pezzo surfaces. In particular,
they are classified up to index 3. Here the index is defined to be the smallest
integer n such that −nKS becomes a Cartier divisor. See [14], [1], [20], [28],
and [11]. For the Picard number one case, see also [32] and [23].

In addition, if we further assume that S is toric, a lot of things have been
investigated thanks to the one-to-one correspondence between toric log del
Pezzo surfaces and certain convex lattice polygons, called LDP-polygons, due
to Dais and Nill ([8]). In particular, toric log del Pezzo surfaces are completely
classified up to index 17 ([6], [21]). See [12] for the list. Moreover, all toric
log del Pezzo surfaces with 1 singular point are completely classified in [7], and
those with 2 singular points are completely classified in [31] which also contains
a partial classification of those with 3 singular points.

In this paper, we shall classify toric log del Pezzo surfaces of Picard num-
ber one by using the notion, a cascade, which was also introduced in [15] for
a larger class of rational Q-homology projective planes. In fact, even though
there exist infinitely many toric log del Pezzo surfaces of Picard number one,
one might think that classifying them is not a very difficult task at least in
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the sense that it is easy to describe their corresponding LDP triangles, i.e.,
LDP-polygons with 3 vertices. But it does not give us any geometric intuition
and thus sometimes it is not easy to derive geometric consequences. By de-
scribing the classification in terms of cascades, which we shall soon define, one
can understand the underlying geometry more clearly. See Section 4 for the
applications. For example, one can easily determine whether a toric log del
Pezzo surface of Picard number one with given singularity types exists or not.
See Theorem 4.1, Corollary 4.2 and Algorithm 4.6.

Definition. Let S be a toric log del Pezzo surface of Picard number one. We
say that S admits a cascade if there exists a diagram as follows:

S′ = S′
t

ϕt−−−−→ S′
t−1

ϕt−1−−−−→ . . .
ϕ1−−−−→ S′

0

πt

y πt−1

y π0

y
St := S St−1 . . . S0

where for each k

(1) ϕk is a toric blow-down,
(2) πk is the minimal resolution,
(3) Sk is a toric log del Pezzo surface of Picard number one, and
(4) S0 is basic, i.e., for every torus-invariant curve D intersecting a (−1)-

curve C in S′, D2 ≥ −2.

In this case, we also say that S admits a cascade to S0, and S0 is the basic
surface of S.

The first main result of the present paper is to show the existence of a
cascade for every toric log del Pezzo surface of Picard number one.

Theorem 1.1. Every toric log del Pezzo surface of Picard number one admits
a cascade.

The condition that the Picard number is one is crucial. See [16, Subsection
3.4] for the counterexample and further discussions when the Picard number is
greater than one.

The proof uses the standard theory of P1-fibrations. By looking at the
dual graph of the torus-invariant divisors, one can immediately extract the
information of P1-fibration structure on the corresponding smooth toric surface.
See Notation 1 for dual graphs.

Moreover, it is easy to classify basic toric log del Pezzo surfaces of Picard
number one.

Proposition 1.2. If S0 is a basic toric del Pezzo surface of Picard number
one, then S0 belongs to one of the following five types of surfaces:

(1) P2.
(2) P(1, 1, n) for n ≥ 2.
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(3) The log del Pezzo surface of Picard number one with two singular points
of type A1 +

1
2n−1 (1, 2), denoted by Sn(0, 2).

(4) The log del Pezzo surface of Picard number one with three singular
points of type 2A1 +

1
4n−4 (1, 2n− 1), denoted by Sn(2, 2).

(5) The log del Pezzo surface of Picard number one with 3 singular points
of type A2, denoted by S2(2, 4).

Conversely, by inverting the cascade process, one can obtain every toric log
del Pezzo surface of Picard number one from the basic ones.

Theorem 1.3. The minimal resolution of every toric log del Pezzo surface
of Picard number one that is not basic is obtained from one of the three basic
toric surfaces Sn(0, 2), Sn(2, 2) and S2(2, 4) by a sequence of toric blowups at
the intersection point of a (−1)-curve and a torus-invariant curve with self-
intersection number at most −2.

Since the cascade and its inverse process preserve the number of singular
points of S, we can describe all toric log del Pezzo surfaces of Picard number
one with respect to the given number of singular points.

Theorem 1.4. Let S be a toric log del Pezzo surface of Picard number one. If
S is not basic, it admits a cascade to one of the three basic surfaces: Sn(0, 2),
Sn(2, 2) and S2(2, 4). In particular, we have the following.

(1) If |Sing(S)| = 0, then S ∼= P2.
(2) If |Sing(S)| = 1, then S ∼= P(1, 1, n), where n ≥ 2.
(3) If |Sing(S)| = 2, then S ∼= P(1, p, q) and it admits a cascade to Sn(0, 2).
(4) If |Sing(S)| = 3, then S admits a cascade to either Sn(2, 2) or S2(2, 4).

In particular, this reproves the theorems in [7] and [31] for the Picard number
one case.

As an application, we shall consider the orbifold Bogomolov–Miyaoka–Yau
inequality together with the Kähler–Einstein property. We first recall what is
known about toric Fano varieties admitting a Kähler–Einstein metric.

Theorem 1.5 ([30], [2]). A toric Fano variety admits a Kähler–Einstein metric
if and only if the barycenter of its moment polytope is the origin.

Motivated by the above theorem, the following definition is widely used in
the literature.

Definition. A toric log del Pezzo surface is said to be Kähler–Einstein if the
barycenter of its moment polytope is the origin.

Now we recall that the orbifold Bogomolov–Miyaoka–Yau inequality does
not hold for Fano manifolds in general. However, Chan and Leung proposed a
Miyaoka–Yau type inequality for Kähler–Einstein toric Fano manifolds.

Theorem 1.6 ([3, Theorem 1.2]). Let X be a Kähler–Einstein toric Fano
manifold of dimension n. Then, for any nef class H, we have

c21(X)Hn−2 ≤ 3c2(X)Hn−2
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if either n = 2, 3, 4, or each facet of the corresponding dual polytope of the Fano
polytope of X contains a lattice point in its interior.

One might ask whether the above inequality can be generalized in singular
setting. In the surface case, the inequality has the same form as the orbifold
Bogomolov–Miyaoka–Yau inequality, which holds under the opposite condition
of the positivity of the canonical divisor.

Theorem 1.7 ([24–26]). (Simpler form) Let S be a normal projective surface
with quotient singularities. If KS is nef, then we have the following inequality.

K2(S) ≤ 3eorb(S).

Unfortunately, the inequality does not hold for Kähler-Einstein toric del
Pezzo surfaces in general, as illustrated in the following example informed to
the author by Yeonsu Kim.

Example 1.8. The Miyaoka-Yau inequality does not hold for a Kähler-
Einstein toric log del Pezzo surface of Picard number two. Let S be a toric log
del Pezzo surface corresponding to the LDP polygon

P = conv{(0, 1), (−m,−1), (0,−1), (m, 1)},

where m > 2. It is easy to see that S is Kähler-Einstein by Theorem 1.5.
However, K2 − 3eorb =

2m−4
m > 0.

However, when the Picard number is one, we have the equality of the above
inequality.

Theorem 1.9. Let S be a toric log del Pezzo surface of Picard number one.
If S is Kähler–Einstein, then we have the following properties.

(1) K2
S = 3eorb.

(2) S is either isomorphic to P2 or S has exactly 3 singular points.
(3) If S is not isomorphic to P2, it admits a cascade to S2(2, 4), i.e., a

cubic surface with 3 singular points of type A2, not to Sn(2, 2).

We emphasize that the Kähler-Einstein property is closely related with the
property of cascades. In particular, the condition of being Kähler-Einstein
forces a singular toric log del Pezzo surface of Picard number one to admits a
cascade to a special basic surface, which is the unique singular cubic surface
with 3 singular points of type A2, not to the basic surface with 3 singular points
of type 2A1 +

1
4n−4 (1, 2n− 1).

As a final application, we give a simple observation that every finite cyclic
group is a Brauer group of a toric log del Pezzo surface of Picard number one.
See Theorem 4.9.

We work over an algebraically closed field of arbitrary characteristic.
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2. Basic toric log del Pezzo surfaces of Picard number one

Throughout this section, let S be a toric log del Pezzo surface of Picard
number one and f : S′ → S be its minimal resolution. Note that if S is singular,
i.e., the Picard number of S′ is greater than one, the torus-invariant divisors
form two sections and two fibers of a suitable P1-fibration Φ : S′ → P1. For
generalities about P1-fibrations on rational surfaces, see [27] or [13].

Notation 2.1. We denote by [[s21, F1, s
2
2, F2]] the smooth toric surface S′

equipped with a P1-fibration Φ : S′ → P1, where s1 and s2 are the two torus-
invariant sections of Φ and; F1 and F2 are the two torus-invariant fibers of
Φ.

Definition. Let F be a singular fiber of a P1-fibration on S′.

(1) F is said to be of type I0 if its dual graph is of the form
−2◦ − −1◦ − −2◦ .

(2) F is said to be of type I if it can be contracted to a fiber of type I0.

(3) F is said to be of type II0 if its dual graph is of the form
−1◦ −−2◦ −−2◦ −−1◦ .

(4) F is said to be of type II if it can be contracted to a fiber of type II0.

Notation 2.2. Let Φ be a P1-fibration.

(1) A smooth fiber is denoted by F0.
(2) A singular fiber of type I0 is denoted by F 0

1 .
(3) A singular fiber of type I is denoted by F1.
(4) A singular fiber of type II0 is denoted by F 0

2 .
(5) A singular fiber of type II is denoted by F2.

The below lemma immediately follows from the standard theory of smooth
projective rational surfaces.

Lemma 2.3. Let S be a toric log del Pezzo surface of Picard number one and
S′ be its minimal resolution. Denote by n the number of torus-invariant curves
on S′ and by N the sum of all self-intersection numbers of the torus-invariant
curves. Then we have N = 12− 3n.

The following notion is essential in the description of the cascades.

Definition. A smooth rational surface S′ is said to be basic if D2 ≥ −2 for
every torus-invariant curve D on S′ intersecting C, where C is any (−1)-curve
on S′. A toric log del Pezzo surface S is said to be basic if its minimal resolution
S′ is basic.

For later use, we introduce the following notation.

Notation 2.4. We will use the following notion.

(1) S(P2) = P2.
(2) S′

n(0, 0) := [[−n, F0, n, F0]].
(3) S′

n(0, 2) := [[−n, F0, n− 1, F 0
1 ]].

(4) S′
n(2, 2) := [[−n, F 0

1 , n− 2, F 0
1 ]].
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Figure 1. Basic dual graphs

(5) S′
2(2, 4) := [[−2, F 0

1 ,−2, F 0
2 ]].

(6) Sn(a, b) denotes the anticanonical model of S′
n(a, b), i.e., the surface

obtained from S′
n(a, b) by contracting all (−n)-curves with n ≥ 2.

Figure 1 describes the basic dual graphs, i.e., the dual graphs of the torus-
invariant curves on the above five surfaces.

Now we are ready to determine basic toric log del Pezzo surfaces of Picard
number one.

Proposition 2.5 (=Proposition 1.2). If S is basic, then S belongs to one of the
following five types of surfaces: S(P2), Sn(0, 0), Sn(0, 2), Sn(2, 2), and S2(2, 4).

Proof. Assume that S is not isomorphic to P2. Then, S is singular and the
Picard number of its minimal resolution S′ is greater than one. Thus, S′ admits
a P1-fibration π : S′ → P1, where the cycle of torus-invariant curves forms two
singular fibers and two sections of π.

If π is relatively minimal, then S′ is isomorphic to the Hirzebruch surface
Fn = S′

n(0, 0) with n ̸= 1. In this case, S is isomorphic to P(1, 1, n).
From now on, we assume that π is not relatively minimal. In particular,

there exists a (−1)-curve on S′. Moreover, since S is singular, there exists a
torus-invariant curve with self-intersection number at most −2.

Note that there exists a (−1)-curve E meeting one of the exceptional curves
of f . Let D1, D2, . . . , Dk be a chain of torus-invariant curves which contracts
to one of the singular points of S such that E intersects D1. Let C be the other
torus-invariant curve intersecting E. Since S is basic, D2

1 ≥ −2 and C2 ≥ −2.
We first consider the case D2

1 = C2 = −2. Since D1 + 2E + C induces a P1-
fibration structure on S′ on which it forms a singular fiber, there exists another
torus-invariant fiber F . Since S is basic, it is easy to see that F belongs to one
of the following four cases:

0◦,−1◦ − −1◦ ,
−2◦ − −1◦ − −2◦ , and

−1◦ − −2◦ − −2◦ − · · · − −2◦ − −1◦ .

In the first and third case, by Lemma 2.3, we see that the corresponding P1-
fibration structures are S′

n(0, 2) and S′
n(2, 2), respectively, where n ≥ 2. In the

second case, one can show that S is of Picard number 2 or 3, a contradiction.
In the final case, since S is basic and ρ(S) = 1, the torus-invariant sections have
self-intersection number −2, so S has only rational double points as singular
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Table 1. Vertices of the basic Fano triangles

P (P2) {(0, 1), (−1,−1), (1, 0)}
Pn(0, 0), n ≥ 2 {(0, 1), (−1, 0), (n,−1)}
Pn(0, 2), n ≥ 2 {(1, 1), (−n,−n+ 1), (1,−1)}
Pn(2, 2), n ≥ 2 {(−1,−1), (3, 1), (2n− 5, 2n− 3)}

P2(2, 4) {(1, 2), (−2, 1), (1,−1)}

P2(0, 0) P2(0, 2) P2(2, 2) P2(2, 4)

Figure 2. Reflexive singular basic Fano polygons

points. Thus, by Lemma 2.3, one can see that F should be of type (II0).
Hence, the corresponding surface is S′

2(2, 4).
Now we consider the case C2 = −1 and assume that there is no (−1)-curve

such that its adjacent torus-invariant curves have self-intersection number at
most −2. Then, since E+C induces a P1-fibration on which it forms a complete
fiber, there exists another torus-invariant fiber F . By assumption, we see that
the fiber F is one of the following:

0◦,−1◦ − −1◦ , and
−1◦ − −2◦ − −2◦ − · · · − −2◦ − −1◦ .

One can see that ρ(S) > 1 in all of the above cases, which is a contradiction.
Finally, we may assume that, for every (−1)-curve E intersecting an excep-

tional curve D1 of f , the other torus-invariant curve C intersecting E have
C2 ≥ 0. Then, by the similar analysis as above, one can see that C is a section
of a P1-fibration Φ, D1 is part of a fiber of type II and the other fiber is either

of type II or of the form
0◦. In any case, we have ρ(S) > 1, a contradiction. □

Remark 2.6. The proof of Proposition 2.5 shows that D2 ≥ −2 can be replaced
by D2 = −2 in the definition of a basic surface.

Every toric log del Pezzo surface of Picard number one corresponds to a Fano
triangle. See [8], [5] and [22] for LDP polygons or Fano polytopes in general.
For each basic surface S in Notation 2.4, we denote by P the corresponding
Fano triangle, which we call a basic Fano triangle. See Table 1 for some fixed
choices for the explicit coordinates for the vertices of the basic Fano triangles.

See also Figure 2 for the drawings of reflexive singular basic Fano triangles.
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3. Cascades of toric log del Pezzo surfaces of Picard number one

In this section we prove the main theorems of this paper and prove some
properties preserved by cascades. For convenience we introduce the following
notion.

Definition. Let S be a toric log del Pezzo surface of Picard number one. We
say that S admits a one-step cascade if there exists a diagram as follows:

S′ ϕ−−−−→ S̄′

π

y π̄

y
S S̄

where

(1) ϕ is a blow-down of a (−1)-curve,
(2) π and π̄ are minimal resolutions, and
(3) S̄ is a toric log del Pezzo surface of Picard number one.

Remark 3.1. In order to satisfy (3), the blowdown in (1) should be special.

Now we prove the main theorems of this paper.

Proof of Theorem 1.1. If S is basic, we are done. Assume that S is not basic.
Then, there exists a (−1)-curve E that intersects a torus-invariant curve C with
C2 ≤ −3. Let D be the other torus-invariant curve intersecting E. We claim
thatD2 = −2. By [32, Lemma 1.4], D2 ≥ −2. IfD2 ≥ −1, then, by contracting
E and then contracting all torus-invariant curves with self-intersection number
at most −2, we get a projective surface of Picard number zero, which is a
contradiction. Thus, we have D2 = −2. In fact, this can also be derived from
[32, Lemma 4.2]. Now, contracting E induces a one-step cascade. Note that
the new surface S̄ in the diagram in Definition 3 is a log del Pezzo surface since
the corresponding Fano polygon is a triangle, hence automatically convex. □

Proof of Theorem 1.3. In the process of each one-step cascade ϕ, the blowing-
up locus of ϕ, as in the above diagram, is exactly the intersection point of
two torus-invariant curves: one of them is a (−1)-curve and the other one
has self-intersection number at most −2. Since there are exactly three basic
surfaces S′

n(0, 2), S
′
n(2, 2) and S′

2(2, 4) containing a torus-invariant (−1)-curve,
the result follows. □

To describe the applications of Theorem 1.1 and Theorem 1.3, we introduce
the notion of a trace of S.

Definition. The absolute value of the sum of self-intersection numbers of all
irreducible components of exceptional curves of f is called the trace tr(S) of
S. In other words,

tr(s) = −
∑

D2
i ,
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where the sum runs over all exceptional curves Di over f .

Now, the proof of Theorem 1.3 immediately yields the following.

Corollary 3.2. The number of singular points of S and the number tr(S) −
3L are invariant under a cascade, where L denotes the number of exceptional
curves of the minimal resolution.

Proof. It is enough to consider only a one-step cascade. It is clear that tr(S)−
3L is invariant under a one-step cascade. This also follows from Lemma 2.3.
Note that a one-step cascade does not increase the number of singular points.
Assume that a one-step cascade decreases the number of singular points of S.
Then, there is a chain of torus-invariant curves whose dual graph is of the form

−n◦ − −1◦ − −2◦ − −m◦ ,

where −m ≥ −1 and −n ≤ −3 since S is not basic. Let E be the (−1)-curve
intersecting the (−n)-curve in the dual graph. By blowing down E, we can see
that n = 3 by [32, Lemma 4.2], hence we get the following dual graph:

−2◦ − −1◦ − −m◦ .

This cannot be possible since the Picard number is one. □

Remark 3.3. By Corollary 3.2, we can easily compute the trace of toric log del
Pezzo surface of Picard number one once we know its basic surface.

S S(P2) Sn(0, 0) Sn(0, 2) Sn(2, 2) S2(2, 4)
tr(S) −3 n 3L− 5 + n(≥ 3L− 3) 3L− 7 + n(≥ 3L− 5) 3L− 6

The above table shows that the number of singular points and the trace of S
determine uniquely the original surface S and its basic surface and vice versa.
This will be used in Algorithm 4.6.

4. Applications

We completely classify toric log del Pezzo surfaces of Picard number one and
the dual graphs of their singularities.

4.1. Classification

Theorem 4.1. Let S be a toric log del Pezzo surface of Picard number one
and S′ be its minimal resolution. Then,

(1) Either S ∼= P(1, 1, n) with n ≥ 1 or S admits a cascade to one of the
following: Sn(0, 2), Sn(2, 2), and S2(2, 4) where n ≥ 2.

(2) Let T be the basic surface of S. Then, we have the following:
(a) if T = Sn(0, 2), then S′ = [[−n, F1, n− 1, F0]],
(b) if T = Sn(2, 2), then S′ = [[−n, F1, n− 2, F ′

1]],
(c) if T = S2(2, 4), then S′ = [[−n, F1,−m,F2]],
where F ′

1 is a fiber of type I possibly different from the fiber F1.
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Proof. Since Sn(0, 0) ∼= P(1, 1, n), (1) immediately follows from Theorem 1.1
and Theorem 1.3.

We may assume that S is not basic. Then, by taking a finite number of
one-step cascades, we can always find three torus-invariant curves whose dual

graph is of the form
−2◦ − −1◦ − −2◦ . Note that they induce a P1-fibration Φ on

the minimal resolution S′ of S, on which they form a singular fiber F of type
(I0).

Consider the case T = Sn(0, 2). Since the inverting process only changes
the singular fiber F of the P1-fibration, we see that G(S) = [[−n, F1, n− 1, 0]]
for some integer n ≥ 2 with the unique singular fiber F1 of type I.

Consider the case T = Sn(2, 2). Then only the two torus-invariant sections
of Φ are invariant under the inverse process among all torus-invariant curves.
Thus, we have G(S) = [[−n, F1, n− 2, F ′

1]] for some integer n ≥ 2, where both
F1 and F ′

1 are of type I.
Consider the case T = S2(2, 4). Since no torus-invariant curve is invariant

under the process of cascades in general, the result follows. □

Now we classify toric log del Pezzo surfaces of Picard number one according
to the number of singular points.

Corollary 4.2. Let S be a toric log del Pezzo surface of Picard number one.
Then we have the following.

(1) If |Sing(S)| ≤ 1, then S ∼= P(1, 1, n) for some n in Z+.
(2) If |Sing(S)| = 2, then S ∼= P(1, q, (n − 1)q + q1) for some positive

integers q, q1, n, where q > q1 and gcd(q, q1) = 1.
(3) If |Sing(S)| = 3, then S is obtained by inverting a cascade from S2(2, 4)

or Sn(2, 2).

In particular, if |Sing(S)| ≤ 2, then S is a weighted projective plane.

To prove Corollary 4.2, we recall the Hirzebruch-Jung continued fraction.

Definition. For integers n1, n2, . . . , nl, we set the following notation,

[n1, n2, . . . , nl] := n1 −
1

n2 −
1

. . . − 1

nl

.

If ni ≥ 2 for each i, then it is called a Hirzebruch-Jung continued fraction.

Proof of Corollary 4.2. For (1) and (3), the result follows from Theorem 4.1
and Corollary 3.2. Assume that |Sing(S)| = 2. By Theorem 4.1 and Corollary
3.2, S is obtained by inverting the cascade from Sn(0, 2).

Let F be a singular fiber of a P1-fibration of the form

□
F1

− ◦
−1

− □
F2

,
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where F1 is the dual graph corresponding to the Hirzebruch-Jung continued
fraction [n1, . . . , nl] and F2 corresponds to [m1, . . . ,mt]. Since F 2 = 0,

[n1, . . . , nl, 1,m1, . . . ,mt] = 0.

Write q
q1

= [m1, . . . ,mt]. By Lemma 4.5 below,

Q = [n, n1, . . . , nl] = n− q − q1
q

=
(n− 1)q + q1

q
.

Thus, S and P(1, q, (n− 1)q + q1) have the same singularity types. This com-
pletes the proof since the singularity type uniquely determines the surface when
|Sing(S)| = 2. □

Remark 4.3. It is well known that a weighted projective plane is a toric log del
Pezzo surface of Picard number one. One can easily construct infinitely many
toric surfaces of Picard number one which is not a weighted projective plane
by inverting the cascade from S2(2, 4). See the construction in the proof of
Theorem 4.9.

Remark 4.4. Corollary 4.2 reproves the results in [7] and [31] for the Picard
number one case.

Lemma 4.5. Let [n1, . . . , nl] and [m1, . . . ,mt] be Hirzebrugh-Jung continued
fractions such that [n1, . . . , nl, 1,m1, . . . ,mt] = 0. If [m1, . . . ,mt] =

q
q1
, then

[nl, . . . , n1] =
q

q−q1
.

Proof. This lemma is well-known and easy to prove. See [29, Example 1] for
the algorithm to compute [n1, . . . , nl] for a given [m1, . . . ,mt]. □

Algorithm 4.6. By Corollary 4.2, we can determine whether there exists a
toric log del Pezzo surface S of Picard number one with given singularity types.

INPUT: a k-tuple ( n1

m1
, . . . , nk

mk
) of positive rational numbers greater than 1,

where k denotes the number of singular points of S and each rational number
describes the singularity type.

OUTPUT: False if there exists no toric log del Pezzo surface of Picard number
one having the given singularity type in INPUT. If it exists, we return S if S
is basic, or S together with its basic surface if otherwise.

PROCEDURE: (using notation in Remark 3.3)

(1) If the input is empty, i.e., k = 0, then S = P2.
(2) If k = 1 and m1 = 1, then S = P(1, 1, n1).
(3) If k ≥ 2, then reorder the k-tuple so that i ≥ j if and only if either

ni > nj , or ni = nj and mi ≥ mj .
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(4) If k = 2, let m′
i be the integer such that ni

m′
i
= [nt, nt−1, . . . , n1], where

ni

mi
= [n1, n2, . . . , nl] for i = 1, 2. If n2 = m1,m

′
1 and n1 = m2,m

′
2

modulo n2, then S ∼= P(1, n2, n1).
(5) If k = 3 and tr = 3L − 6, then consider the three dual graphs of the

singularities corresponding to the triple in INPUT. Form a cycle G
by adding one vertex of weight −1 between any two of the three dual
graphs. Note that there are four possible ways for forming the cycle.
If the graph is G2(2, 4) after a finite number of “blowing-down” of the
graph, then S is the toric log del Pezzo surface of Picard number one
whose dual graph of the torus-invariant divisors is G.

(6) If k = 3 and tr ≥ 3L− 5, then consider the three dual graphs G1, G2,
G3 of the singularities corresponding to n1

m1
, n2

m2
, n3

m3
. Form a tree G by

adding one vertex of weight −1 between G1 and G2; and between G1

and G3. Note that there are three possible ways for forming the tree.
If the graph is Gn(2, 2) after a finite number of “blowing-down” of the
graph, then S is the toric log del Pezzo surface of Picard number one
whose dual graph of the torus-invariant divisors is G.

(7) Return False.

4.2. Kähler–Einstein toric log del Pezzo surfaces of Picard number
one

We shall show that the Kähler–Einstein property is closely related with the
existence of a cascade to a particular basic surface. The main result in this
direction is Theorem 1.9.

Proof of Theorem 1.9. Since P2 is Kähler–Einstein, (2) follows from [18, Corol-
lary 4.7].

Let S be a Kähler–Einstein log del Pezzo surface of Picard number one.
It is enough to assume that S is singular. Consider the minimal resolution
f : S′ → S. Let D1, . . . , DL be the all irreducible components of the reduced
part D of the f -exceptional divisor. By [18, Corollary 4.7], S has 3 singular
points, each of which has local fundamental group of order a, i.e., the finite
groups inducing the three singular points have the same order. Then, by [17,
Section 3 and Lemma 3.6],

K2
S = tr − 3L+ 6 +

9

a
,

where tr = −
∑L

k=1D
2
k. Since 3eorb =

9
a , we see that K2

S = 3eorb if and only if
tr = 3L− 6 if and only if S admits a cascade to S2(2, 4). The last equivalence
follows from Corollary 4.2 and Lemma 3.3. Thus, it remains to show that S
admits a cascade to S2(2, 4). Now the below lemma completes the proof by
Corollary 4.2. □

Lemma 4.7. Let S be a log del Pezzo surface of Picard number one. If S
admits a cascade to Sn(2, 2), then S is not Kähler–Einstein.



CASCADES OF TORIC LOG DEL PEZZO SURFACES 849

Proof. Let P be the Fano polygon corresponding to S. It is enough to show
that the barycenter of P is not the origin by [2, Theorem 1.2] together with
[19, Proposition 3.1]. Since S admits a cascade to Sn(2, 2), P admits a cascade
to Pn(2, 2). By Table 1, Pn(2, 2) = conv{(−1,−1), (3, 1), (2n − 5, 2n − 3)}, so
its barycenter lies below the y-axis. Since the y-coordinate of the barycenter is
not increasing during the inverting process of the cascade, the barycenter of P
cannot be the origin. □

4.3. Brauer groups

The Brauer–Grothendieck group B(X), in short, the Brauer group, of a
scheme X is defined by B(X) = H2

ét(X,Gm), where Gm denotes the multi-
plicative group. See [4] for an extensive discussion.

Ford showed that every finite abelian group is the Brauer group of a ring
([10]). In the course of the proof, he showed that every finite cyclic group is
the Brauer group of a certain affine singular 3-fold. On the other hand, the
Brauer group of a projective toric surface is always finite cyclic and can easily
be computed by the following theorem.

Theorem 4.8 ([9, Corollary 2.9]). Let X be a toric surface, ∆ be the corre-
sponding complete fan on R2 and ∆(1) = {ρ1, . . . , ρn}. If N ′ = ⟨ρ1∩N, . . . , ρn∩
N⟩, then B(X) ∼= N/N ′.

By using the above theorem, we show that every finite cyclic group is a
Brauer group of a toric log del Pezzo surface of Picard number one. In fact, for
each finite cyclic group G, we construct a toric log del Pezzo surface of Picard
number one whose Brauer group is G by inverting a cascade.

Theorem 4.9. For each positive integer n, there exists a toric log del Pezzo
surface S of Picard number one with Br(S) ∼= Z/nZ.

Proof. First, we observe that Br(P2) is a trivial group and Br(S2(2, 2)) ∼= Z/2.
For each integer n ≥ 3, we shall explicitly construct a toric log del Pezzo surface
S of Picard number one with Br(S) ∼= Z/nZ by inverting the cascade from
S2(2, 4). Let S0 = S2(2, 4) and f : S′

0 → S0 be its minimal resolution. Choose
a chain of two (−2)-curves C1 and C2. Let Ei be a (−1)-curve intersecting Ci

for each i = 1, 2. Blow up the intersection point of C1 and E1, and then blow
up the intersection point of C2 and E2. Let S

′
1 be the resulting surface and S1

be its anticanonical model. Note that there exists a (−1)-curve E′
i intersecting

the proper transform C ′
i of Ci for i = 1, 2. Blow up the intersection point

of C ′
1 and E′

1, and then blow up the intersection point of C ′
2 and E′

2. Let
S′
2 be resulting surface and S2 be its anticanonical model. One can continue

this inverting process. Note that Sn is a toric log del Pezzo surface of Picard
number one with 3 singular points of type 2An+2+[n+2, n+2] for every n ≥ 0.
Now it is easy to see that Br(Sn) ∼= Z/(n+ 3)Z by Theorem 4.8. □
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