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DIFFERENT CHARACTERIZATIONS OF CURVATURE IN

THE CONTEXT OF LIE ALGEBROIDS

Rabah Djabri

Abstract. We consider a vector bundle map F : E1 −→ E2 between

Lie algebroids E1 and E2 over arbitrary bases M1 and M2. We as-
sociate to it different notions of curvature which we call A-curvature,

Q-curvature, P-curvature, and S-curvature using the different character-

izations of Lie algebroid structure, namely Lie algebroid, Q-manifold,
Poisson and Schouten structures. We will see that these curvatures gen-

eralize the ordinary notion of curvature defined for a vector bundle, and

we will prove that these curvatures are equivalent, in the sense that F is a
morphism of Lie algebroids if and only if one (and hence all) of these cur-

vatures is null. In particular we get as a corollary that F is a morphism
of Lie algebroids if and only if the corresponding map is a morphism of

Poisson manifolds (resp. Schouten supermanifolds).

1. Introduction

The definition of morphism of Lie algebroids over arbitrary bases was in-
troduced by Higgins and Mackenzie [4] in 1990, and the justification for the
definition was considerably involved and elaborate (see as well [6, Section
4.3]). Let us consider a vector bundle map (F, f) : (E1,M1, π1, a1, [, ]1) →
(E2,M2, π2, a2, [, ]2) between Lie algebroids E1 and E2 over arbitrary bases M1

and M2 and with anchors a1 and a2, respectively. The difficulty of finding
the right definition of morphism of Lie algebroids is due to the fact that the
map f does not necessarily induce a map of sections from E1 to E2, unlike in
the case when both Lie algebroids are over a same manifold M and f is the
identity map (more details can be found in [6]). In this paper we review the
definition of morphism of Lie algebroids over arbitrary bases: We motivate the
definition of morphism of Lie algebroids by considering first a diffeomorphism
f between the base manifolds M1 and M2, and this will induce a map on the
sections. After that we can weaken the condition of f being a diffeomorphism
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and this will enable us to extend the definition naturally to the case when f is
an arbitrary map.

It is known that a Lie algebroid structure on a vector bundle E is equivalent
to one of the following equivalent formulations (see for example [7, 10]):

• A Q-manifold structure on ΠE, where ΠE = (M,ΓΛ(E∗)) with Λ(E∗)
being the exterior bundle of E∗.

• A Poisson bracket on C∞(E∗), where E∗ is the dual vector bundle of
E.

• A Schouten bracket on C∞(ΠE∗), where ΠE∗ = (M,ΓΛ(E)) with
Λ(E) being the exterior bundle of E.

Given a vector bundle morphism F : E1 → E2, where E1 and E2 are
Lie algebroids over bases M1 and M2, then we get the corresponding maps
FΠ : ΠE1 −→ ΠE2, H : E∗

2 −→ E∗
1 and T : ΠE∗

2 −→ ΠE∗
1 between Q-

manifolds, Poisson manifolds and Schouten supermanifolds, respectively. A
theorem of Vaintrob [7] states that F is a morphism of Lie algebroids if and
only if FΠ is a morphism of Q-manifolds. We get corresponding results con-
sidering the Poisson and Schouten structures under the stronger condition of
f : M1 → M2 being a diffeomorphism. This means that the map F is a mor-
phism of Lie algebroids if and only if H is a morphism of Poisson manifolds
(likewise, if and only if T is a morphism of Schouten supermanifolds). And as
far as we know this has not been discussed in the literature.

To this end and using the different characterizations of Lie algebroid struc-
ture, we introduce different notions of curvature which we call A-curvature,
Q-curvature, P-curvature and S-curvature. Any of these curvatures is defined
to be the failure of the corresponding map to be a morphism of the corre-
sponding structure, for example P-curvature will represent the failure of the
map H : E∗

2 −→ E∗
1 to be a morphism of Poisson manifolds. Hence any of these

curvatures is null if and only if the corresponding map is a morphism with re-
spect to the corresponding structure. We will prove that these curvatures are
equivalent, in the sense that the vector bundle map F is a morphism of Lie
algebroids if and only if one (and hence all) of these curvatures is null.

A Koszul connection ∇ : X(M) × ΓE −→ ΓE on a vector bundle E can

be reinterpreted as a vector bundle map ∇̂ : TM −→ D(E) between the Lie
algebroids TM and D(E), where D(E) is the Lie algebroid of derivations on E
(see for instance [6, Section 5.2]). The details will be discussed in Example 4.5.
On the other hand, if E is a Lie algebroid with anchor a, then a Lie algebroid
connection is defined to be a vector bundle map s : TM −→ E such that
a◦ s = idTM , which can be seen to extend the concept of Koszul connection on
a vector bundle (see for example [6]); and moreover a Lie algebroid connection
is flat (i.e. the curvature is null) if and only if it is a morphism of Lie algebroids.
In this paper instead of considering a Lie algebroid connection s : TM −→ E,
we consider a vector bundle map F : E1 −→ E2 between Lie algebroids E1 and
E2 over arbitrary bases M1 and M2, and thus the curvatures mentioned earlier
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(i.e. A-curvature, Q-curvature, P-curvature and S-curvature) associated with
F will extend the ordinary notion of curvature defined for a vector bundle.

The paper is organized as follows: In Section 2, we review the definition of
morphism of Lie algebroids and give a natural motivation of the definition in
the case when we have Lie algebroids over arbitrary bases. In Section 3, we
consider a vector bundle map F : E1 → E2, where E1 and E2 are Lie alge-
broids over bases M1 and M2 and treat the different curvatures A-curvature,
Q-curvature, P-curvature and S-curvature, and show that the vector bundle
map F is a morphism Lie algebroids if and only if one of these curvatures is
null. In particular we get that F is a morphism of Lie algebroids if and only
if the corresponding map is a morphism of Poisson manifolds (resp. Schouten
supermanifolds). In the appendix we give some background material on the
theory of supermanifolds necessary for understanding the paper.

2. Morphism of Lie algebroids

Definition. A Lie algebroid on a manifold M is a vector bundle (E,M, π)
with a vector bundle map a : E −→ TM over M , and a Lie bracket [ , ] : ΓE×
ΓE −→ ΓE such that

(1) [s, ft] = f [s, t] + a (s) (f) t,
(2) a [s, t] = [a (s) , a (t)] for all s, t ∈ ΓE and f ∈ C∞ (M).

The map a is called the anchor of the Lie algebroid E. The Lie algebroid will
be denoted by (E,M, π, a, [, ]). We use as well the notation [s, h] = a(s)(h), for
s ∈ ΓE and h ∈ C∞(M).

In what follows we consider two Lie algebroids (E1,M1, π1, a1, [, ]1) and
(E2,M2, π2, a2, [, ]2), and let

(F, f) : (E1,M1, π1, a1, [, ]1) −→ (E2,M2, π2, a2, [, ]2)

be a vector bundle morphism.
Suppose that r is a section of E1 and that there are sections vα of E2, and

functions rα ∈ C∞(M1) such that F ◦ r =
∑

α rαf∗(vα). Then the decompo-
sition

∑
α rαf∗(vα) is called an F -decomposition for r. An F -decomposition

always exists and is not necessarily unique (see for example [4, Section 1] and
[1]). However it is easy to see that a local F -decomposition for a section r ∈ ΓE1

exists, that is there exist open neighbourhoods U1 and U2 of M1 and M2 re-
spectively and local sections vα ∈ ΓE2|U2 and functions rα ∈ C∞(U1) such
that F ◦ r|U1

=
∑

α rαf∗(vα). To see this suppose that (ei) is a local basis of
ΓE1 on an open neighbourhood U1 and (vα) a local basis of ΓE2 on an open
neighbourhood U2 such that f(U1) ⊆ U2 and that r|U1

=
∑

i s
iei. Then

(1) F ◦ r|U1 =
∑
i,α

siFα
i f

∗(vα),
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for some functions Fα
i ∈ C∞(U1). Since a Lie bracket is local, that is, its value

at a point x depends only on an open neighbourhood of x, it is sufficient to
consider local F -decompositions.

We suppose that the map f : M1 −→ M2 is a diffeomorphism with inverse
g. We define the map F̄ : C∞(M1) ∪ ΓE1 −→ C∞(M2) ∪ ΓE2 by

F̄ (h) = g∗(h) and F̄ (r) = F ◦ r ◦ g

for h ∈ C∞(M1), and r ∈ ΓE1. Therefore the map F̄ gives us a one-to-one
correspondence between C∞(M1) and C∞(M2) and between ΓE1 and ΓE2.

We define the map R1 : ΓE1 × C∞(M1) −→ C∞(M1) by

(2) R1(r, h) = f∗F̄ [r, h]1 − f∗[F̄ (r), F̄ (h)]2,

and therefore if F ◦ r =
∑

α rαf∗(vα), then we have

(3) R1(r, h) = [r, h]1 −
∑
i

rαf∗[vα, g
∗h]2.

We define as well the map ∆: ΓE1 × C∞(M2) −→ C∞(M1) by

(4) ∆(r, h) = [r, f∗h]1 −
∑
α

rαf∗[vα, h]2.

As can be seen the definition of ∆ is valid even when the map f is not
a diffeomorphism, and that when f is a diffeomorphism we have ∆(r, h) =
R1(r, f

∗h). When both ∆ and R1 are defined we have ∆ = 0 if and only if
R1 = 0, and any of the equations ∆ = 0 and R1 = 0 is equivalent to the anchor
preservation condition a2◦F = df ◦a1, which can be verified without difficulty.
We could have defined only the map ∆, but for the convenience of presentation
we introduced the map R1 as well.

For r, z ∈ ΓE1, suppose that F ◦r =
∑

α rαf∗(vα), and F ◦z =
∑

β z
βf∗(wβ),

for some functions rα, zβ in C∞(M1), and some sections vα, wβ in ΓE2. Since
F̄ (r) =

∑
α g∗(rα)vα and F̄ (z) =

∑
β g

∗(zβ)wβ , we have

[F̄ (r), F̄ (z)]2 =
∑
α,β

(
g∗(rα)g∗(zβ)[vα, wβ ]2 + g∗(rα)[vα, g

∗(zβ)]2wβ

−g∗(zβ)[wβ , g
∗(rα)]2vα

)
,(5)

and this gives

f∗ [F̄ (r), F̄ (z)
]
2
=
∑
α,β

(
rαzβf∗[vα, wβ ]2 + f∗[g∗(rα)vα, g

∗(zβ)]2f
∗(wβ)

−f∗[g∗(zβ)wβ , g
∗(rα)]2f

∗(vα)
)
.(6)

On the other hand we have∑
α

f∗ [g∗(rα)vα, g∗(zβ)]2 = f∗[g∗(F ◦ r), g∗(zβ)]2

= [r, zβ ]1 −R1(r, z
β),
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and therefore (6) becomes

f∗[F̄ (r), F̄ (z)]2

=
∑
α,β

rαzβf∗[vα, wβ ]2 +
∑
β

[r, zβ ]1f
∗(wβ)−

∑
α

[z, rα]1f
∗(vα)

+
∑
α

R1(z, r
α)f∗(vα)−

∑
β

R1(r, z
β)f∗(wβ).(7)

Then we will say that (F, f) is a morphism of Lie algebroids if F̄ [r, h]1 =
[F̄ (r), F̄ (h)]2 and F̄ [r, z]1 = [F̄ (r), F̄ (z)]2, for all r, z ∈ ΓE1 and all h ∈
C∞(M1). This is equivalent to requiring that

(1) ∆ = 0 and

(2) F ◦ [r, z]1 =
∑
α,β

rαzβf∗[vα, wβ ]2 +
∑
j

[r, zβ ]1f
∗(wβ)

−
∑
α

[z, rα]1f
∗(vα),

which represent the anchor preservation and the bracket preservation conditions
respectively.

As can be seen the first and second conditions do not involve g, and therefore
they can be extended as a definition of morphism of Lie algebroids in the case
when f is arbitrary, i.e. not necessarily a diffeomorphism. However in this
case we need to make sure that this definition does not depend on the F -
decompositions of the sections r and z. And now we are ready to give the
definition of morphism of Lie algebroids in the general case, i.e. when the map
f is arbitrary.

Definition. Let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2) be Lie algebroids
and (F, f) : (E1,M1, π1, a1, [, ]1) → (E2,M2, π2, a2, [, ]2) a vector bundle mor-
phism. Then we say that (F, f) is a Lie algebroid morphism if

(1) a2 ◦ F = d f ◦ a1, and
(2) F ◦ [r, z]1 =

∑
α,β

rαzβf∗[vi, wβ ]2 +
∑
β

[r, zβ ]1f
∗(wβ)

−
∑
α

[z, rα]1f
∗(vα),

whenever F ◦ r =
∑

i r
αf∗(vα), and F ◦ z =

∑
β z

βf∗(wβ).

Here we need to check that the second condition does not depend on the
F -decompositions of the sections r and z. For r ∈ ΓE1, let

(8)

K(z) = {(zβ , wβ)β : β = 1, 2, . . . , n for some n, zβ ∈ C∞(M1),

wβ ∈ ΓE2, F ◦ z =
∑
β

zβf∗(wβ)}.

Hence K(z) represents the set of all F -decompositions of the section z ∈ ΓE1.
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Let (rα, vα)α ∈ K(z), that is, we fix some F -decomposition of the section r,
and consider the map N : K(z) −→ Γf∗E2 given by

(9)

N
(
(zβ , wβ)β

)
=
∑
α,β

rαzβf∗[vα, wβ ]2 +
∑
β

[r, zβ ]1f
∗(wβ)

−
∑
α

[z, rα]1f
∗(vα).

By a direct computation we get

(10) N((zβ , hβwβ)β) = N((zβf∗(hβ), wβ)β)−
∑
β

zβ∆(r, hβ)f∗(wβ).

Suppose that F ◦ z =
∑

β z
βf∗(wβ) =

∑
β z̄

βf∗(w̄β), and let (εγ) be a local

basis of ΓE2. Suppose that wβ =
∑

γ mβγεγ and w̄β =
∑

γ m̄βγεγ . Therefore

F ◦ z =
∑

β,γ z
βf∗(mβγ)f

∗(εγ) =
∑

β,γ z̄
βf∗(m̄βγ)f

∗(εγ).
Given that ∆ = 0 since a2 ◦ F = d f ◦ a1, therefore we get

N((zβ , wβ)β) = N

(
(zβ ,

∑
γ

mβγεγ)β

)
=
∑
γ

N
(
(zβ ,mβγεγ)β

)
= N

(∑
γ

zβf∗(mβγ), εγ

)
β

−
∑
β,γ

zβ∆(r,mβγ)f
∗(εγ)

= N((z̄β , w̄β)β).

We conclude that N((z̄β , w̄β)β) = N((zβ , wβ)β), that is the right-hand side
of the second condition does not depend on the F -decompositions of the sec-
tion z, and since the expression

∑
α,β r

αzβf∗[vα, wβ ]2 +
∑

β [r, z
β ]1f

∗(wβ) −∑
i[z, r

α]1f
∗(vα) is antisymmetric, likewise it does not depend on the F -

decompositions of the section r, and therefore the definition is good.

3. Derivations along a map of supermanifolds

We state below two propositions that will be needed in what follows. Some
necessary background material about supermanifolds is given in the appendix.

Definition (see [2, Definition 1.2]). If f : M −→ N is a map between super-
manifolds, then a homogeneous derivation along f (or simply a homogeneous
f -derivation) is a homogeneous R-linear map D : C∞(N ) −→ C∞(M) such
that

D(gh) = D(g)f∗(h) + (−1)D̃g̃f∗(g)D(h),

for all homogeneous g, h ∈ C∞(N ). If D̃ = 0 then D is said to be an even

f -derivation, and if D̃ = 1 then D is said to be an odd f -derivation. An
(arbitrary) f -derivation is a sum of an even f -derivation and an odd one. As
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can be noticed when f is the identity map then D is just an ordinary derivation
(or a vector field). As in the case of derivations the following proposition gives
us a general representation of an f -derivation in a local coordinate system.

Proposition 3.1 (see [2, Proposition 2.1]). Suppose that f : M −→ N is a
map between supermanifolds, and D : C∞(N ) −→ C∞(M) an f -derivation.
Then locally

D =
∑
A

DAf∗ ◦ ∂yA

for some functions DA ∈ C∞(M), where (yA) are local coordinates on N .

Proof. The proposition was given in [2] without proof, we shall provide one in
what follows.

It is sufficient to prove that if D(yA) = 0 for all A where (yA) are local
coordinates on N , then D is identically 0. To see this suppose that the previous
supposition is valid and consider the map X = D −

∑
A D(yA)f∗ ◦ ∂yA which

is an f -derivation and satisfies X(yA) = 0 for all A, and therefore X = 0 by
our assumption, that is D =

∑
A D(yA)f∗ ◦ ∂yA .

Before proceeding to the rest of the proof we need the following lemma.

Lemma 3.2 (The generalized Hadamard lemma). Suppose that g : V −→
R is a smooth function, where V is an open convex subset of Rn containing b.
Then there are real numbers aµ and smooth functions gµ : V −→ R such that

g(y) =
∑
|µ|≤k

aµ(y − b)µ +
∑

|µ|=k+1

gµ(y)(y − b)µ,

where y = (y1, y2, . . . , yn), µ = (µ1, µ2, . . . , µn), |µ| = µ1 + µ2 + · · · + µn,
yµ = (y1)µ1(y2)µ2 · · · (yn)µn , µα ∈ {0, 1, . . . , k}.

In the case when k = 0 the lemma is just the (classical) Hadamard lemma,
i.e. for a smooth function g : V −→ R where V is an open subset of Rn, there
are smooth functions gα : V −→ R such that

g(y) = g(b) +

n∑
α=1

gα(y)(y
α − bα).

The generalized Hadamard lemma can be obtained by repeatedly applying
the Hadamard lemma to the functions gµ.

To finish the proof of the proposition, suppose that D is a homogeneous
f -derivation, and hence

D(gh) = D(g)f∗(h) + (−1)D̃g̃f∗(g)D(h).

Let U be an open neighbourhood U of M with coordinates (xi, θj) and V an
open neighbourhood of N with coordinates (yα, ηβ) such that f(U) ⊆ V , with
i = 1, 2, . . . ,m, j = 1, 2, . . . , k, α = 1, 2, . . . , n and β = 1, 2, . . . , p. Without
loss of generality we can assume that U is an open neighbourhood of Rm and
V a convex open neighbourhood of Rn. Let a ∈ U and b = f(a).
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We claim that if D (yα) = 0 and D
(
ηβ
)
= 0 for all α, β, then D = 0. First

let g ∈ C∞(V ) and suppose that D(g) =
∑

I hIθ
I for some functions hI ∈

C∞(U) (here I = (s1, s2, . . . , sk) ∈ {0, 1}k). By the generalized Hadamard
lemma there are functions gµ such that

g(y) =
∑
|µ|≤k

aµ(y − b)µ +
∑

|µ|=k+1

gµ(y)(y − b)µ.

Since D(yα) = 0, then D ((y − b)µ) = 0 and therefore

D(g) = D

∑
|µ|≤k

aµ(y − b)µ +
∑

|µ|=k+1

gµ(y)(y − b)µ


=

∑
|µ|=k+1

D (gµ) (f
∗(y − b))

µ

=
∑

|µ|=k+1

D (gµ)

n∏
α=1

(f∗(yα − bα))
µα .(11)

Let f∗ (yα − bα) = rα + nα where rα ∈ C∞(U) and nα is the nilpotent (even)
part. Therefore we have

(f∗(yα − bα))
µα = (rα + nα)

µα = rαℓα + nµα
α

for some function ℓα ∈ C∞(M|U ). Using this and (11) we get

D(g) =
∑
I

hIθ
I =

∑
|µ|=k+1

D (gµ)

n∏
α=1

(rαℓα + nµα
α ) .

Since va [f
∗ (yα − bα)] = 0, we have rα(a) = 0. We define the degree of a

monomial zIθ
I , with zI ∈ C∞(U) and zI ̸= 0, to be |I|; and we convene that 0 is

of degree k+1. We can see that every monomial in
∑

|µ|=k+1 D (gµ)
∏n

α=1(rαℓα
+nµα

α ) has a factor rα or is of degree |µ| = k+1 (but a monomial of degree k+1
is equal to 0). Hence the monomial hIθ

I has a factor rα, and since rα is a factor
of hI and rα(a) = 0, we get hI(a) = 0. Since a is arbitrary, we conclude that
hI = 0 for all I and therefore D(g) = 0. If g ∈ C∞(N|V ), then g =

∑
J gJη

J

for some functions gJ ∈ C∞(V ) (here J = (t1, t2, . . . , tp) ∈ {0, 1}p). Therefore

D(g) =
∑
J

D(gJ)f
∗(ηJ) = 0.

SinceD(gJ) = 0 by the first part, and since this is true for all g then we conclude
that D = 0. If D is not necessarily homogeneous, then just apply the preceding
argument to the homogeneous parts, and this completes the proof. □

Proposition 3.3. Let ε ∈ {0, 1} and consider a map m : M1 −→ M2 with
coordinates (xA) on M1 and coordinates (yB) on M2, and suppose that we
have an R-bilinear map W : C∞ (M2)×C∞ (M2) −→ C∞ (M1) such that for
homogeneous functions,
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• W (f, g) = −(−1)(f̃+ε)(g̃+ε)W (g, f),

• W (f, gh) = W (f, g)m∗(h) + (−1)(f̃+ε)g̃m∗(g)W (f, h),

• W̃ (f, g) = f̃ + g̃ + ε.

Then W is locally given by

W (f, g) =
∑
A,B

(−1)(Ã+f̃)(B̃+ε)W
(
yA, yB

)
m∗
(

∂f

∂yA

)
m∗
(

∂g

∂yB

)
,

where Ã = ỹA.

Proof. We can see that

W (fg, h) = m∗(f)W (g, h) + (−1)f̃ g̃m∗(g)W (f, h)

for homogeneous functions f, g, h ∈ C∞ (M2).
For f ∈ C∞ (M2) let N(f) : C∞ (M2) −→ C∞ (M1) be the map defined

by N(f)(g) = W (f, g). Therefore

N(f)(gh) = N(f)(g)m∗(h) + (−1)Ñ(f)g̃m∗(g)N(f)(h).

Hence N(f) is an m-derivation, and therefore by Proposition 3.1 we have

(12) N(f)(g) =
∑
B

NB(f)m∗
(

∂g

∂yB

)
,

where NB(f) = N(f)(yB).
On the other hand we have

NB(fg) = m∗(f)NB(g) + (−1)f̃ g̃m∗(g)NB(f),

with ÑB = B̃ + ε. If we let NB(f) = (−1)(B̃+ε)f̃NB(f) then NB is an m-

derivation, and therefore, by Proposition 3.1, NB(f) =
∑

A NABm∗
(

∂f
∂yA

)
,

with NAB = NB(yA). Therefore we get

(13) NB(f) =
∑
A

(−1)(Ã+f)(B̃+ε)W
(
yA, yB

)
m∗
(

∂f

∂yA

)
.

By (12) and (13) we conclude that

W (f, g) =
∑
A,B

(−1)(Ã+f̃)(B̃+ε)W
(
yA, yB

)
m∗
(

∂f

∂yA

)
m∗
(

∂g

∂yB

)
.

□

This proposition will be used later to express Q-curvature, P-curvature and
S-curvature in a general local representation.
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4. Curvature

Definition. Let ε ∈ {0, 1} and M be a supermanifold with an R-bilinear
bracket { , } : C∞ (M) × C∞ (M) −→ C∞ (M) such that, for homogeneous
functions,

• {̃f, g} = f̃ + g̃ + ε,

• {f, g} = −(−1)(f̃+ε)(g̃+ε){g, f},
• {f, {g, h}} = {{f, g}, h}+ (−1)(f̃+ε)(g̃+ε){g, {f, h}},
• {f, gh} = {f, g}h+ (−1)(f̃+ε)g̃g{f, h}.

When ε = 0, then we say that M is a Poisson supermanifold (hence we have
a Poisson bracket), and when ε = 1, then we say that M is an odd Poisson
(or a Schouten) supermanifold (hence we have a Schouten bracket). For more
details, see [9].

Here f̃ denotes the parity of the function f . The third and fourth conditions
in the definition are called the Jacobi identity and the Leibniz rule respectively.

Definition. A Q-manifold is a supermanifold M with a homological vector

field Q, i.e., a vector field Q with [Q,Q] = 0 and parity Q̃ = 1. A Q-manifold
will be denoted by (M, Q), and a morphism between Q-manifolds (M1, Q1)
and (M2, Q2) is defined to be a map F : M1 −→ M2 such that Q1 and Q2 are
F -related, i.e., Q1 ◦ F ∗ = F ∗ ◦Q2.

Let (E,M, π, a, [, ]) be a Lie algebroid, and let ΠE and ΠE∗ be the superman-
ifolds given respectively by ΠE = (M,ΓΛ(E∗)) and ΠE∗ = (M,ΓΛ(E)), where
Λ(E∗) and Λ(E) are the exterior bundles of E∗ and E respectively. Therefore
we have the global sections C∞(ΠE∗) = ΓΛ(E) and C∞(ΠE) = ΓΛ(E∗). The
symbol Π is called the parity reversal functor and this because what it does
can be interpreted as changing the parity of the fibre coordinates.

Let (ei) be a local basis of ΓE, let (xd) be coordinates on the base M , (ξi)
be coordinates on ΠE, (pi) coordinates on E∗, and (πi) coordinates on ΠE∗

corresponding to the local sections (ei). Let

[ei, ej ] =
∑
k

ckijek, a (ei) =
∑
d

adi
∂

∂xd
.

Then the corresponding homological vector field on ΠE is given locally (see
[10, p. 284]) by

Q =
∑
i,d

ξiadi
∂

∂xd
− 1

2

∑
i,j,k

ξiξjckij
∂

∂ξk
.

The Poisson bracket on C∞(E∗) is given locally (see [10, p. 285]) by

{xa, xb} = 0, {pi, xd} = adi , {pi, pj} =
∑
k

ckijpk.
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The Schouten bracket on C∞(ΠE∗) is given locally (see [10, p. 285]) by

{xa, xb} = 0, {πi, x
d} = adi , {πi, πj} =

∑
k

ckijπk.

In this section we introduce A-curvature, Q-curvature, P-curvature and S-
curvature. The terminology is motivated by the fact that these curvatures are
defined in the context of Lie algebroid, Q-manifold, Poisson and Schouten struc-
tures, respectively. In this section we let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2,
a2, [, ]2) be Lie algebroids over bases M1 and M2, and anchors a1 and a2 respec-
tively, and consider a vector bundle morphism (F, f) : (E1,M1, π1, a1, [, ]1) −→
(E2,M2, π2, a2, [, ]2) such that the map f : M1 −→ M2 is a diffeomorphism.

4.1. A-curvature

Let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2) be Lie algebroids over bases
M1 andM2 and anchors a1 and a2 respectively. Let (F, f) : (E1,M1, π1, a1, [, ]1)
−→ (E2,M2, π2, a2, [, ]2) be a vector bundle morphism such that the map
f : M1 −→ M2 is a diffeomorphism.

Let (ei) and (vα) be local bases of ΓE1 and ΓE2, respectively, and let (xd)
and (yq) be coordinates on the base manifolds M1 and M2, respectively. We
let as well

[ei, ej ] =
∑
k

ckijek, [vα, vβ ] =
∑
γ

c′
γ
αβvγ ,

a1 (ei) =
∑
d

adi
∂

∂xd
, a2 (vα) =

∑
q

a′
q
α

∂

∂yq
.

We recall the map R1 : ΓE1 × C∞(M1) −→ C∞(M1) given by

R1(r, h) = f∗F̄ [r, h]1 − f∗[F̄ (r), F̄ (h)]2.

Equation (3) states that

R1(r, h) = [r, h]1 −
∑
i

rαf∗[vα, g
∗(h)]2,

and therefore by letting F ◦ ei =
∑

α Fα
i f

∗(vα) we have

R1(ei, h) = [ei, h]1 −
∑
γ

F γ
i f

∗[vγ , g
∗(h)]2

=
∑
d

adi
∂h

∂xd
−
∑
q,γ

F γ
i f

∗(a′
q
γ)f

∗
(
∂g∗(h)

∂yq

)
=
∑
d,q

adi f
∗
(
∂g∗(h)

∂yq

)
∂f∗(yq)

∂xd
−
∑
q,γ

F γ
i f

∗(a′
q
γ)f

∗
(
∂g∗(h)

∂yq

)

=
∑
q

(∑
d

adi
∂f∗(yq)

∂xd
−
∑
γ

F γ
i f

∗(a′
q
γ)

)
f∗
(
∂g∗(h)

∂yq

)
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=
∑
q

Aq
i f

∗
(
∂g∗(h)

∂yq

)
,(14)

where

(15) Aq
i =

∑
d

adi
∂f∗(yq)

∂xd
−
∑
α

Fα
i f

∗(a′
q
α).

Now let R : ΓE1 × ΓE1 −→ Γf∗E2 be the map given by

R(r, z) = f∗F̄ [r, z]1 − f∗[F̄ (r), F̄ (z)]2,

and therefore by (7) we have (cf. [3, Section 4.2])

R(r, z) = F ◦ [r, z]1 −
∑
α,β

rαzβf∗[vα, wβ ]2 −
∑
j

[r, zβ ]1f
∗(wβ)

+
∑
α

[z, rα]1f
∗(vα)−

∑
i

R1(z, r
α)f∗(vα) +

∑
β

R1(r, z
β)f∗(wβ).(16)

Have

R(r, hz)

= F ◦ [r, hz]1 −
∑
i,j

rihzjf∗[vi, wj ]2 −
∑
j

[r, hzj ]1f
∗(wj) +

∑
i

[hz, ri]1f
∗(vi)

−
∑
i

R1(hz, r
i)f∗(vi) +

∑
j

R1(r, hz
j)f∗(wj)

= h(F ◦ [r, z]1) + [r, h]1(F ◦ z)−
∑
i,j

rihzjf∗[vi, wj ]2 −
∑
j

h[r, zj ]1f
∗(wj)

− [r, h]1
∑
j

zjf∗(wj) +
∑
i

h[z, ri]1f
∗(vi)−

∑
i

r1(hz, r
i)f∗(vi)

+
∑
j

R1(r, hz
j)f∗(wj)

= h

F ◦ [r, z]1 −
∑
i,j

rizjf∗[vi, wj ]2 −
∑
j

[r, zj ]1f
∗(wj) +

∑
i

[z, ri]1f
∗(vi)


−
∑
i

hR1(z, r
i)f∗(vi) +

∑
j

hR1(r, z
j)f∗(wj) +

∑
j

zjR1(r, h)f
∗(wj)

= hR(r, z) +
∑
j

zjR1(r, h)f
∗(wj)

= hR(r, z) +R1(r, h)(F ◦ z).

We can immediately see that R is an R-bilinear and antisymmetric map, and
for r, z ∈ ΓE1 we have

(17) R(r, hz) = hR(r, z) +R1(r, h)(F ◦ z).
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Let Rij = R(ei, ej), and by using (1) and (16) we get

Rij = F ◦ [ei, ej ]1 −
∑
αβ

Fα
i F

β
j f

∗[vα, vβ ]2 −
∑
β

[ei, F
β
j ]1f

∗(vβ)

+
∑
α

[ej , F
α
i ]1f

∗(vα)−
∑
α

R1(ej , F
α
i )f

∗(vα) +
∑
β

R1(ei, F
β
j )f

∗(vβ)

=
∑
k,γ

F γ
k c

k
ijf

∗(vγ)−
∑
αβγ

Fα
i F

β
j f

∗ (c′γαβ) f∗(vγ)−
∑
d,γ

adi
∂F γ

j

∂xd
f∗(vγ)

+
∑
d,γ

adj
∂F γ

i

∂xd
f∗(vγ)

∑
γ

−R1(ej , F
γ
i )f

∗(vγ) +
∑
γ

R1(ei, F
γ
j )f

∗(vγ)

=
∑
γ

∑
k

F γ
k c

k
ij −

∑
αβ

Fα
i F

β
j f

∗ (c′γαβ)−∑
d

adi
∂F γ

j

∂xd
+
∑
d

adj
∂F γ

i

∂xd

+R1(ei, F
γ
j )−R1(ej , F

γ
i )
)
f∗(vγ)

=
∑
γ

∑
k

F γ
k c

k
ij −

∑
αβ

Fα
i F

β
j f

∗ (c′γαβ)−∑
d

adi
∂F γ

j

∂xd
+
∑
d

adj
∂F γ

i

∂xd

+
∑
q

Aq
i f

∗

(
∂g∗F γ

j

∂yq

)
−
∑
q

Aq
jf

∗
(
∂g∗F γ

i

∂yq

))
f∗(vγ)

=
∑
γ

(
Kγ

ij +
∑
q

Aq
i f

∗

(
∂g∗F γ

j

∂yq

)
−
∑
q

Aq
jf

∗
(
∂g∗F γ

i

∂yq

))
f∗(vγ),(18)

where

(19) Kγ
ij =

∑
k

F γ
k c

k
ij −

∑
α,β

Fα
i F

β
j f

∗ (c′γαβ)−∑
d

adi
∂F γ

j

∂xd
+
∑
d

adj
∂F γ

i

∂xd
.

Therefore we have

(20)

R

∑
i

αiei,
∑
j

βjej


=
∑
i,j

Rijα
iβj +

∑
i,j

(
αjR1

(
ej , β

i
)
− βjR1

(
ej , α

i
))

F ◦ ei.

The function R will be called the A-curvature of the vector bundle map
(F, f). As can be seen the map (F, f) is a morphism of Lie algebroids if and
only if R = 0.
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4.2. Q-curvature

As before let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2) be Lie algebroids
over bases M1 and M2 and anchors a1 and a2 respectively. Let

(F, f) : (E1,M1, π1, a1, [, ]1) −→ (E2,M2, π2, a2, [, ]2)

be a vector bundle morphism such that the map f : M1 −→ M2 is a diffeomor-
phism. This subsection is mainly based on [3, Section 4.2].

Let (ei) and (vα) be local bases of ΓE1 and ΓE2 respectively, and let (xd)
and (yq) be coordinates on the base manifolds M1 and M2 respectively, (ξi)
and (ηα) coordinates on ΠE1 and ΠE2 corresponding to the bases (ei) and
(vα) respectively. Then the corresponding homological vector fields on ΠE1

and ΠE2 are given by

Q1 =
∑
d,i

ξiadi
∂

∂xd
−
∑
i,j,k

1

2
ξiξjckij

∂

∂ξk

and

Q2 =
∑
q,α

ηαa′
q
α

∂

∂yq
−
∑
α,β,γ

1

2
ηαηβc′

γ
αβ

∂

∂ηγ
,

where

[ei, ej ] =
∑
k

ckijek, [vα, vβ ] =
∑
γ

c′
γ
αβvγ ,

a1 (ei) =
∑
d

adi
∂

∂xd
, a2 (vα) =

∑
q

a′
q
α

∂

∂yq
.

From the map F : E1 −→ E2 we get the corresponding map FΠ : ΠE1 −→ ΠE2

between the Q-manifolds ΠE1 and ΠE2. In what follows the map FΠ will be
denoted simply by F , and it will be clear from the context which of F and FΠ

is intended. The Q-curvature of the map F denoted by D (which is called field
strength as well) is defined to be the failure of the homological vector fields on
ΠE1 and ΠE2 to be F -related, that is

D = Q1 ◦ F ∗ − F ∗ ◦Q2.

Since D is an F -derivation, then it is determined by D(h) and D (ηα) where
h ∈ C∞ (M2) (see Proposition 3.1).

Since F ◦ ei =
∑

α Fα
i f

∗(vα), then F ∗(ην) =
∑

s F
ν
s ξ

s and F ∗(h) = f∗(h)
for h ∈ C∞ (M2). Therefore we have (cf. [3, Section 4.2])

D(h) = Q1F
∗(h)− F ∗Q2(h)

=
∑
i

(∑
d

adi
∂f∗(h)

∂xd
−
∑
q,α

Fα
i f

∗ (a′qα) f∗
(

∂h

∂yq

))
ξi

=
∑
i

(∑
d

adi f
∗
(

∂h

∂yq

)
∂f∗(yq)

∂xd
−
∑
q,α

Fα
i f

∗ (a′qα) f∗
(

∂h

∂yq

))
ξi
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= Aq
i f

∗
(

∂h

∂yq

)
ξi,(21)

where Aq
i is as given in (15).

It can be seen that R1 = 0 if and only if D(h) = 0 for all h ∈ C∞ (M2), that
is D(h) = 0 for all h is equivalent to the anchor condition, i.e. d f ◦a1 = a2 ◦F .

We have as well (see [3, Section 4.2])

D(ην) = Q1F
∗(ην)− F ∗Q2(η

ν)

=− 1

2

∑
i,j

Kν
ijξ

iξj ,(22)

whereKν
ij are as given in (19). From (21), (22), and Proposition 3.1 we conclude

that

(23) D = −1

2

∑
i,j,α

Kα
ijξ

iξj
(
F ∗ ◦ ∂

∂ηα

)
+
∑
i,q

ξiAq
i

(
F ∗ ◦ ∂

∂yq

)
,

where Kγ
ij , A

q
i are as given in equations (19) and (15) respectively.

We summarize all of this in the following theorem.

Theorem 4.1 (cf. [3, Section 4.2]). We have the following:

• D(h) = 0 for all h ∈ C∞ (M2) if and only if d f ◦ a1 = a2 ◦ F .

• D = − 1
2

∑
i,j,α Kα

ijξ
iξj
(
F ∗ ◦ ∂

∂ηα

)
+
∑

i,q ξ
iAq

i

(
F ∗ ◦ ∂

∂yq

)
.

• D = 0 if and only if (F, f) is a morphism of Lie algebroids.

As can be seen, the equation D = 0 is equivalent to saying that F is a
morphism of Q-manifolds. Hence we recover the result of Vaintrob [7] which
states that (F, f) is a morphism of Lie algebroids if and only if F is a morphism
of Q-manifolds.

4.3. P-curvature

As before let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2) be Lie algebroids
over bases M1 and M2 and anchors a1 and a2 respectively. Let

(F, f) : (E1,M1, π1, a1, [, ]1) −→ (E2,M2, π2, a2, [, ]2)

be a vector bundle morphism such that the map f : M1 −→ M2 is a diffeomor-
phism. Then we get the diagram

(24)

E∗
2 E∗

1

M2 M1

F∗

g

where g = f−1. Let (ei) and (vα) be local bases of ΓE1 and ΓE2 respec-
tively, and let (xd) and (yq) be coordinates on the base manifolds M1 and
M2 respectively, (pi) and (uα) coordinates on E∗

1 and E∗
2 corresponding to



938 R. DJABRI

the bases (ei) and (vα) respectively. Since (vα) is a local basis of ΓE2, then
(v∗α) is a local basis of ΓE∗

2 . Let x = g(y), then F [ei(x)] =
∑

α Fα
i (x)vα(y).

Let Gα
i (y) = Fα

i (g(y)). Then we get the map F ∗ : E∗
2 −→ E∗

1 defined by
F ∗(ℓ) = ℓ ◦ F . For ℓ =

∑
α uαv

∗
α(y), we get

F ∗

(∑
α

uαv
∗
α(y)

)
=
∑
α

pαF
∗(v∗α(y))

=
∑
j,α

uαG
α
j (y) e∗j (g(y)).

We put H = F ∗, and we get the map H : E∗
2 −→ E∗

1 , which is given locally by

H ((y, uα)α) =

(
g(y),

∑
α

Gα
j (y)uα

)
j

.

Therefore we get the pullback H∗ : C∞ (E∗
1 ) −→ C∞ (E∗

2 ) given locally by

H∗(xa) = g∗(xa) and H∗(pj) =
∑
α

Gα
j uα.

On ΓE1, we have

[ei, ej ]1 =
∑
k

ckijek and a1 (ei) =
∑
d

adi
∂

∂xd
.

On ΓE2, we have

[vα, vβ ]2 =
∑
α

c′
γ
αβvγ and a2 (vα) =

∑
q

a′
q
α

∂

∂yq
.

The Poisson bracket on C∞(E1
∗) is given locally by

{xa, xb}1 = 0, {pi, xd}1 = adi , {pi, pj}1 =
∑
k

ckijpk.

Therefore by Proposition 3.3 we have

{v, w}1 =
∑
i,j,k

ckijpk
∂v

∂pi

∂w

∂pj
+
∑
i,d

adi
∂v

∂pi

∂w

∂xd
−
∑
i,d

adi
∂v

∂xd

∂w

∂pi
.

The Poisson bracket on C∞(E2
∗) is given locally by

{yq, ys}2 = 0, {uα, y
q}2 = a′

q
α, {uα, uβ}2 =

∑
γ

c′
γ
αβuγ .

Therefore by Proposition 3.3 we get

{v, w}2 =
∑
α,β,γ

c′
γ
αβuγ

∂v

∂uα

∂w

∂uβ
+
∑
q,α

a′
q
α

∂v

∂uα

∂w

∂yq
−
∑
q,α

a′
q
α

∂v

∂yq
∂w

∂uα
.

Let P : C∞ (E∗
1 )× C∞ (E∗

1 ) −→ C∞ (E∗
2 ) be the map given by

P (v, w) = {H∗(v), H∗(w)}2 −H∗{v, w}1.
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The map P is called the P-curvature associated with the map H. As can be
seen the map P represents the failure of the mapH to be a morphism of Poisson
manifolds.

By Proposition 3.3 we have

P (v, w) =
∑
i,j

P ijH∗
(

∂v

∂pi

)
H∗
(
∂w

∂pj

)
+
∑
i,d

Ld
iH

∗
(

∂v

∂pi

)
H∗
(

∂w

∂xd

)

−
∑
i,d

Ld
iH

∗
(

∂v

∂xd

)
H∗
(
∂w

∂pi

)
,(25)

where P ij = P (pi, pj) and Ld
i = P (pi, x

d). Using equation (15) we get

Ld
i = P (pi, x

d)

= {H∗(pi), H
∗(xd)}2 −H∗{pi, xd}1

=

{∑
α

Gα
i uα, g

∗(xd)

}
2

−H∗(adi )

=
∑
q,α

Gα
i a

′q
α

∂g∗(xd)

∂yq
− g∗(adi )

= −g∗
∑
s

(Jf)−1
dsA

s
i .(26)

Therefore,

P ij = {H∗(pi), H
∗(pj)}2 −H∗{pi, pj}1

=

∑
α

Gα
i uα,

∑
β

Gβ
j uβ


2

−H∗

(∑
k

ckijpk

)

=−
∑
γ

∑
k

g∗(ckij)G
γ
k −

∑
α,β

Gα
i G

β
j c

′γ
αβ −

∑
q,α

Gα
i a

′q
α

∂Gγ
j

∂yq

+
∑
q,α

Gα
j a

′q
α

∂Gγ
i

∂yq

)
uγ

=−
∑
γ

∑
k

g∗(ckij)g
∗(F γ

k )−
∑
α,β

g∗(Fα
i )g

∗(F β
j )c

′γ
αβ

−
∑
d

(
Ld
i + g∗(adi )

)
g∗

(
∂F γ

j

∂xd

)
+
∑
d

(
Ld
j + g∗(adj )

)
g∗
(
∂F γ

i

∂xd

))
uγ

=−
∑
γ

∑
k

g∗(ckij)g
∗(F γ

k )−
∑
α,β

g∗(Fα
i )g

∗(F β
j )c

′γ
αβ
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−
∑
d

g∗(adi )g
∗

(
∂F γ

j

∂xd

)
+
∑
d

g∗(adj )g
∗ ∂F

γ
i

∂xd
−
∑
d

Ld
i g

∗

(
∂F γ

j

∂xd

)

+
∑
d

Ld
jg

∗
(
∂F γ

i

∂xd

))
uγ

=−
∑
γ

(
g∗(Kγ

ij)−
∑
d

Ld
i g

∗

(
∂F γ

j

∂xd

)
+
∑
d

Ld
jg

∗
(
∂F γ

i

∂xd

))
uγ

=−
∑
γ

g∗(Kγ
ij)−

∑
d,s

g∗
(
(Jf)−1

dsA
s
i

)
g∗

(
∂F γ

j

∂xd

)

−
∑
d,s

g∗
(
(Jf)−1

dsA
s
j

)
g∗
(
∂F γ

i

∂xd

)uγ

=−
∑
γ

g∗

Kγ
ij −

∑
d,s

(Jf)−1
dsA

s
i

∂F γ
j

∂xd
−
∑
d,s

(Jf)−1
dsA

s
j

∂F γ
i

∂xd

uγ ,(27)

where Kγ
ij , A

s
j are as given by equations (19) and (15) respectively.

We endow the manifold f∗E∗
2 with a Poisson bracket induced by the Poisson

bracket on C∞(E∗
2 ) as follows:

{ûα, ûβ}3 = f∗{uα, uβ}2 =
∑
γ

f∗(c′γαβ)ûγ ,

{xa, xb}3 = 0,

{ûα, x
b}3 = f∗{uα, g

∗(xb)}2 =
∑
q

f∗(a′qα )f
∗
(
∂g∗(xb)

∂yq

)
,(28)

where (xa, ûα) are local coordinates on f∗E∗
2 , in particular the coordinates

(ûα) are the coordinates associated with the coordinates (uα). Consider the
diagram

(29) f∗E∗
2 E∗

2 E∗
1 ,

φ H

where the map φ : f∗E∗
2 −→ E∗

2 is given by

(30) φ ((x, ûα)α) = (f(x), ûα)α.

We define the map Ĥ : f∗E∗
2 −→ E∗

1 and P̂ : C∞(E∗
1 )×C∞(E∗

1 ) −→ C∞(f∗E∗
2 )

by

Ĥ = H ◦ φ and P̂ = φ∗ ◦ P.
Therefore the map Ĥ is given locally by

(31) Ĥ((x, ûα)α) =

(
x,
∑
α

Fα
j (x)ûα

)
j

.
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Therefore we have

P̂ (v, w) =
∑
i,j

φ∗(P ij)Ĥ∗
(

∂v

∂pi

)
Ĥ∗
(
∂w

∂pj

)

+
∑
d,i

φ∗(Ld
i )Ĥ

∗
(

∂v

∂pi

)
Ĥ∗
(

∂w

∂xd

)

−
∑
d,i

φ∗(Ld
i )Ĥ

∗
(

∂v

∂xd

)
Ĥ∗
(
∂w

∂pi

)
.(32)

By (26) we get

(33) φ∗(Ld
i ) = −

∑
s

(Jf)−1
ds A

s
i .

and

(34) φ∗(P ij) = −
∑
γ

Kγ
ij −

∑
d,s

(Jf)−1
ds A

s
i

∂F γ
j

∂xd
−
∑
d,s

(Jf)−1
ds A

s
j

∂F γ
i

∂xd

 ûγ .

We could have considered P̂ instead of P as the definition of P-curvature, in

particular P̂ and P are equivalent in the sense that P̂ = 0 if and only if P = 0.

The advantage of considering P̂ is that when the anchor condition is satisfied
that is As

i = 0, then there is no f−1 involved in its expression, and this allows

us to extend P̂ to the case when f is not necessarily a diffeomorphism. In that

case P̂ becomes

P̂ (v, w) =
∑
i,j

φ∗(P ij)Ĥ∗
(

∂v

∂pi

)
Ĥ∗
(
∂w

∂pj

)
.

So then (that is when the anchor condition is satisfied and f is not necessarily
a diffeomorphism) we have to verify that it is well-defined, that is, it does not
depend on the choice of local coordinates. Hence if (ēi) and (v̄α) are other local
bases of ΓE1 and ΓE2 respectively with ēi =

∑
k mkiek and v̄α =

∑
β τβαvβ ,

then we get

K̄γ
ij =

∑
s,t,σ

msimtjf
∗ (τ−1

γσ

)
Kσ

st, p̄i =
∑
k

mkipk, ūα =
∑
β

τβαuβ

for the corresponding quantities. Therefore∑
i,j

φ∗(P ij)Ĥ∗
(

∂v

∂pi

)
Ĥ∗
(
∂w

∂pj

)

=
∑
i,j,γ

Kγ
ij ûγĤ

∗
(

∂v

∂pi

)
Ĥ∗
(
∂w

∂pj

)
=

∑
s,i,t,j,γ,
σ,δ,r,z

m−1
si m

−1
tj f∗ (τγσ) K̄

σ
stf

∗
(
τ−1
δγ

)
ˆ̄uδmir,
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Ĥ∗
(

∂v

∂p̄r

)
mjzĤ

∗
(
∂w

∂p̄z

)
=
∑
s,t

φ∗(P̄ st)Ĥ∗
(

∂v

∂p̄s

)
Ĥ∗
(
∂w

∂p̄t

)
,

which means that it is well-defined.

4.4. S-curvature

As before let (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2) be Lie algebroids
over bases M1 and M2 and anchors a1 and a2, respectively. Let

(F, f) : (E1,M1, π1, a1, [, ]1) −→ (E2,M2, π2, a2, [, ]2)

be a vector bundle morphism such that the map f : M1 −→ M2 is a diffeomor-
phism.

Let (ei) and (vα) be local bases of ΓE1 and ΓE2 respectively, and let (xd)
and (yq) be coordinates on the base manifolds M1 and M2 respectively, (πi)
and (θα) coordinates on ΠE∗

1 and ΠE∗
2 corresponding to the bases (ei) and

(vα) respectively. Let g = f−1 and x = g(y), then F [ei(x)] =
∑

α Fα
i (x)vα(y).

From the map H : E∗
2 −→ E∗

1 , we get the corresponding map T : ΠE∗
2 −→ ΠE∗

1

given locally by

T ((y, θα)α) =

(
g(y),

∑
α

Gα
j (y)θα

)
j

,

where Gα
j (y) = Fα

j (g(y)) . And we get the pullback

T ∗ : C∞ (ΠE∗
1 ) −→ C∞ (ΠE∗

2 )

given locally by

T ∗(xa) = g∗ (xa) and T ∗(πj) =
∑
α

Gα
j θα.

On ΓE1, we have

[ei, ej ]1 =
∑
k

ckijek and a1 (ei) =
∑
d

adi
∂

∂xd
.

On ΓE2, we have

[vα, vβ ]2 =
∑
γ

c′
γ
αβvγ and a2 (vα) =

∑
q

a′
q
α

∂

∂yq
.

The Schouten bracket on C∞(ΠE∗
1 ) is given locally by

{xa, xb}1 = 0, {πi, x
d}1 = adi , {πi, πj}1 =

∑
k

ckijπk.

Therefore, by Proposition 3.3, we get

{v, w}1 =
∑
i,j,k

ckij(x)πk
∂v

∂πi

∂w

∂πj
−
∑
d,i

(−1)ṽadi
∂v

∂πi

∂w

∂xd
−
∑
d,i

adi
∂v

∂xd

∂w

∂πi
.
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The Schouten bracket on C∞(ΠE2
∗) is given locally by

{yq, ys}2 = 0, {θα, yq}2 = a′
q
α, {θα, θβ}2 =

∑
γ

c′
γ
αβθγ .

Therefore, by Proposition 3.3, we get

{v, w}2 =
∑
α,β,γ

c′
γ
αβθγ

∂v

∂θα

∂w

∂θβ
−
∑
q,α

(−1)ṽa′
q
α

∂v

∂θα

∂w

∂yq
−
∑
q,α

a′
q
α

∂v

∂yq
∂w

∂θα
.

We define the map S : C∞ (ΠE∗
1 )× C∞ (ΠE∗

1 ) −→ C∞ (ΠE∗
2 ) by

S(v, w) = {T ∗(v), T ∗(w)}2 − T ∗{v, w}1.

The map S is called the S-curvature associated with the map T . As can be seen
the map S represents the failure of the map T to be a morphism of Schouten
supermanifolds.

By Proposition 3.3 and proceeding as in the case of P , we get

S(v, w) =
∑
i,j

SijT ∗
(

∂v

∂πi

)
T ∗
(
∂w

∂πj

)
−
∑
d,i

(−1)ṽLd
i T

∗
(

∂v

∂πi

)
T ∗
(

∂w

∂xd

)

−
∑
d,i

Ld
i T

∗
(

∂v

∂xd

)
T ∗
(
∂w

∂πi

)
,(35)

where

Sij = {T ∗(πi), T
∗(πj)}2 − T ∗{πi, πj}1

=

∑
α

Gα
i θα,

∑
β

Gβ
j θβ


2

−
∑
k

T ∗(ckijπk)

=−
∑
γ

∑
k

g∗(ckij)G
γ
k −

∑
α,β

Gα
i G

β
j c

′γ
αβ −

∑
q,α

Gα
i a

′q
α

∂Gγ
j

∂yq

+
∑
q,α

Gα
j a

′q
α

∂Gγ
i

∂yq

)
θγ

=−
∑
γ

g∗

Kγ
ij −

∑
d,s

(Jf)−1
ds A

s
i

∂F γ
j

∂xd
−
∑
d,s

(Jf)−1
ds A

s
j

∂F γ
i

∂xd

 θγ ,(36)

and Ld
i as given in (26).

We endow the supermanifold Πf∗E∗
2 with a Schouten bracket induced by

the Schouten bracket on C∞(ΠE∗
2 ) as follows:

{θ̂α, θ̂β}3 = f∗{θα, θβ}2 =
∑
γ

f∗(c′γαβ)θ̂γ ,

{xa, xb}3 = 0,
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{θ̂α, xb}3 = f∗{θα, g∗(xb)}2 =
∑
q

f∗(a′qα )f
∗
(
∂g∗(xb)

∂yq

)
,(37)

where (xa, θ̂α) are local coordinates on f∗E∗
2 , in particular the coordinates

(θ̂α) are the coordinates associated with the coordinates (θα). Now consider
the diagram

(38) Πf∗E∗
2 ΠE∗

2 ΠE∗
1 ,

ρ T

where the map ρ : Πf∗E∗
2 −→ ΠE∗

2 is given by

(39) ρ
(
(x, θ̂α)α

)
= (f(x), θ̂α)α.

Then we define the maps T̂ : Πf∗E∗
2 −→ ΠE∗

1 and Ŝ : C∞(ΠE∗
1 ) × C∞(ΠE∗

1 )
−→ C∞(Πf∗E∗

2 ) by

T̂ = T ◦ ρ and Ŝ = ρ∗ ◦ S.

Therefore the map T̂ is given locally by

(40) T̂ ((x, θ̂α)α) =

(
x,
∑
α

Fα
j (x)θ̂α

)
j

.

We have

Ŝ(v, w) =
∑
i,j

ρ∗(Sij)T̂ ∗
(

∂v

∂πi

)
T̂ ∗
(
∂w

∂πj

)
+
∑
d,i

ρ∗(Ld
i )T̂

∗
(

∂v

∂πi

)
T̂ ∗
(

∂w

∂xd

)

−
∑
d,i

ρ∗(Ld
i )T̂

∗
(

∂v

∂xd

)
T̂ ∗
(
∂w

∂πi

)
.(41)

By (26) we have

(42) ρ∗(Ld
i ) = −

∑
s

(Jf)−1
ds A

s
i .

and

(43) ρ∗(Sij) = −
∑
γ

Kγ
ij −

∑
d,s

(Jf)−1
ds A

s
i

∂F γ
j

∂xd
−
∑
d,s

(Jf)−1
ds A

s
j

∂F γ
i

∂xd

 θ̂γ .

We could have considered Ŝ instead of S as the definition of S-curvature, in

particular Ŝ and S are equivalent in the sense that Ŝ = 0 if and only if S = 0.

The advantage of considering Ŝ is that when the anchor condition is satisfied
that is As

i = 0, then there is no f−1 involved in its expression, and this allows

us to extend P̂ to the case when f is not necessarily a diffeomorphism. In that

case Ŝ becomes

Ŝ(v, w) =
∑
i,j

ρ∗(Sij)T̂ ∗
(

∂v

∂πi

)
T̂ ∗
(
∂w

∂πj

)
.
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So then (that is when the anchor condition is satisfied and f is not necessarily
a diffeomorphism) we have to verify that it is well-defined, that is, it does not
depend on the choice of local coordinates. Hence if (ēi) and (v̄α) are other local
bases of ΓE1 and ΓE2 respectively with ēi =

∑
k mkiek and v̄α =

∑
β τβαvβ ,

then we get

K̄γ
ij =

∑
s,t,σ

msimtjf
∗ (τ−1

γσ

)
Kσ

st, π̄i =
∑
k

mkiπk, θ̄α =
∑
β

τβαθβ

for the corresponding quantities. Therefore∑
i,j

ρ∗(Sij)T̂ ∗
(

∂v

∂πi

)
T̂ ∗
(
∂w

∂πj

)

=
∑
i,j

Kγ
ij θ̂γ T̂

∗
(

∂v

∂πi

)
T̂ ∗
(
∂w

∂πj

)

=
∑

s,i,t,j,γ,σ,δ,r,z

m−1
si m

−1
tj f∗ (τγσ) K̄

σ
stf

∗
(
τ−1
δγ

)
ˆ̄θδmirT̂

∗
(

∂v

∂π̄r

)
mjzT̂

∗
(

∂w

∂π̄z

)

=
∑
s,t

ρ∗(S̄st)Ĥ∗
(

∂v

∂π̄s

)
T̂ ∗
(
∂w

∂π̄t

)
which means that it is well-defined.

We summarize the results of this section in the following theorem.

Theorem 4.2. Let (F, f) : (E1,M1, π1, a1, [, ]1) −→ (E2,M2, π2, a2, [, ]2) be a
vector bundle morphism, where (E1,M1, π1, a1, [, ]1) and (E2,M2, π2, a2, [, ]2)
are Lie algebroids over bases M1 and M2 and anchors a1 and a2 respectively,
such that the map f : M1 −→ M2 is a diffeomorphism. Then we have the
following:

• R
(∑

i α
iei,
∑

j β
jej

)
=
∑

i,j Rijα
iβj

+
∑

i,j

(
αjR1

(
ej , β

i
)
− βjR1

(
ej , α

i
))

F ◦ ei,
• D = − 1

2

∑
i,j,α Kα

ijξ
iξj
(
F ∗ ◦ ∂

∂ηα

)
+
∑

i,q ξ
iAq

i

(
F ∗ ◦ ∂

∂yq

)
,

• P (v, w) =
∑

i,j P
ijH∗

(
∂v
∂pi

)
H∗
(

∂w
∂pj

)
+
∑

d,i L
d
iH

∗
(

∂v
∂pi

)
H∗ ( ∂w

∂xd

)
−
∑

d,i L
d
iH

∗ ( ∂v
∂xd

)
H∗
(

∂w
∂pi

)
,

• S(v, w) =
∑

i,j S
ijT ∗

(
∂v
∂πi

)
T ∗
(

∂w
∂πj

)
−
∑

d,i(−1)ṽLd
i T

∗
(

∂v
∂πi

)
T ∗ ( ∂w

∂xd

)
−
∑

d,i L
d
i T

∗ ( ∂v
∂xd

)
T ∗
(

∂w
∂πi

)
,

where Rij , R1(ei, ·), Kγ
ij , A

q
i , L

d
i , P

ij and Sij are as given by equations (18),

(14), (19), (15), (26), (27) and (36).
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Corollary 4.3. The map (F, f) is a Lie algebroid morphism if and only if one
of the following equivalent conditions is satisfied:

• H : E∗
2 −→ E∗

1 is a morphism of Poisson manifolds.
• T : ΠE∗

2 −→ ΠE∗
1 is a morphism of Schouten supermanifolds.

The restriction that f should be a diffeomorphism as can be seen is not
necessary in the cases of R and D, but necessary for P and S. The maps R,
D, P and S are uniquely determined by the quantities Kγ

ij and Ad
i , and when

one of them is annulled then all the others are annulled. This allows us to say
that the maps P , S, R and D are equivalent characterizations of curvature and
extend the usual notion of curvature of a Lie algebroid connection. In the case
when M1 = M2 = M and f = id, we get the following corollary.

Corollary 4.4. If d f ◦ a1 = a2 ◦ F , then we have the following:

• R = 1
2

∑
i,j,α Kα

ij e
∗
i ∧ e∗j f∗(vα).

• D = − 1
2

∑
i,j,α Kα

ijξ
iξj
(
F ∗ ◦ ∂

∂ηα

)
.

• P = −
∑

i,j,α g∗(Kα
ij)uα

(
H∗ ◦ ∂

∂pi

) (
H∗ ◦ ∂

∂pj

)
.

• S = −
∑

i,j,α g∗(Kα
ij)θα

(
T ∗ ◦ ∂

∂πi

) (
T ∗ ◦ ∂

∂πj

)
.

In the case when E1 and E2 are Lie algebroids over the same base M ,
i.e. M1 = M2 = M and f = id, with anchors a1 and a2 respectively then
R : ΓE1 × ΓE1 −→ ΓE2 is given by R (X,Y ) = F [X,Y ] − [FX,FY ] and
R1 = a1 − a2 ◦ F . The functions Kα

ij are given by R (ei, ej) =
∑

α Kα
ijvα.

Example 4.5. Let E be a vector bundle overM . We define the Lie algebroid of
derivations D(E) associated to E as follows (see [6, Chapter 3] and [3, Chapter
2]):

Let Dx : ΓE −→ Ex be an R-linear map from the space of sections ΓE to
the fibre Ex at x . Then, we say that Dx ∈ D(E) if there is a tangent vector
Xx ∈ TxM , such that

Dx(fs) = f(x)Dx(s) +Xx(f)s(x)

for any function f ∈ C∞(M) and any section s ∈ ΓE (the definition mimics
that of a tangent vector at a point x). We define the anchor a : D(E) → TM by
a(Dx) = Xx. ThenD(E) is a vector bundle overM by defining π : D(E) −→ M
by π(Dx) = x.

A section D ∈ ΓD(E) will be identified with the R-linear map D̃ : ΓE → ΓE

given by D̃(s)(x) = D(x)(s), and therefore a section of D(E) is any R-linear
map D̃ : ΓE → ΓE for which there is a vector field X such that

D̃(fs) = fD̃(s) +X(f)s

for f ∈ C∞(M) and s ∈ ΓE (in this case a(D̃) = X). Then the Lie bracket on
ΓD(E) is given by

[D1, D2] = D1 ◦D2 −D2 ◦D1.
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The vector bundle D(E) as defined above is a Lie algebroid on M .
The tangent bundle TM is a Lie algebroid for which the anchor a : TM →

TM is just the identity map, and the Lie bracket is the usual Lie bracket of
vector fields.

Let ∇ : X(M) × ΓE −→ ΓE be a Koszul connection on a vector bundle E.

Then ∇ can be reinterpreted as a vector bundle map ∇̂ : TM −→ D(E) by

letting ∇̂(Xx)(s) = ∇Xx
s for Xx ∈ TxM . This can be seen from the fact that

∇̂(Xx)(fs) = f(x)∇̂(Xx)(s) +Xx(f)s(x).

Since a ◦ ∇̂ = idTM , then the map ∇̂ is a (Lie algebroid) connection (see the
introduction for the definition of a Lie algebroid connection).

In the notation of Section 4.1 if we take E1 = TM , E2 = D(E) , M1 =

M2 = M , a1 = idTM , a2 = a and F = ∇̂, then the A-curvature R is given by

R(X,Y ) = ∇̂ ◦ [X,Y ]− [∇̂ ◦X, ∇̂ ◦X].

Let R∇ be the curvature of the Koszul connection ∇. Then R∇ is given by

R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Therefore by the identifications above we have R(X,Y ) = −R∇(X,Y ). Hence

the A-curvature of the vector bundle map ∇̂ and the curvature of the Koszul
connection ∇ are the same up to sign.

Appendix A.

In this appendix we give some background material on the theory of super-
manifolds necessary for understanding the material of this paper. It is mainly
based on [3, Chapter 2], more detailed treatment of the subject can be found
in [5].

A.1. Supermanifolds

Let C∞(U) be the commutative R-algebra of smooth functions on an open
subset U of a smooth manifold M . The exterior algebra over C∞(U) with
indeterminates (θ1, θ2, . . . , θn), which is denoted by C∞(U)[θ1, θ2, . . . , θn], is
defined by

C∞(U)[θ1, θ2, . . . , θn] =

{
f : f =

∑
I

fIθ
I , fI ∈ C∞(U), I ∈ Bn

}
where B = {0, 1}, and if I = (i1, i2, . . . , in), then θI = (θ1)i1(θ2)i2 · · · (θn)in ,
with (θj)0 = 1, (θj)1 = θj , θiθi = 0, θiθj = −θjθi. The exterior alge-
bra C∞(U)[θ1, θ2, . . . , θn] is a commutative R-superalgebra (associative with
unity). If f = f0 +

∑
I ̸=0 fIθ

I , then we define the value of the function f at

x ∈ U by vx(f) = f0(x).
A function f ∈ C∞(U)[θ1, θ2, . . . , θn] can be considered a polynomial on the

indeterminates (θ1, θ2, . . . , θn). A function f =
∑

I fIθ
I is said to be of parity
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0 (or even) if it is the sum of monomials of even degree, and we write f̃ = 0.
Likewise a function f =

∑
I fIθ

I is said to be of parity 1 (or odd) if it is the

sum of monomials of odd degree, and we write f̃ = 1. The function f is said
to be homogeneous if it is even or odd.

Definition. Let m and n be nonnegative integers. A supermanifold M of
dimension (m|n) is a pair (M,A) where M is a smooth manifold of dimension
m and A is a sheaf of R-superalgebras on M such that there is an open cover
{Uα} of M and A(Uα) ∼= C∞(Uα)[θ

1, . . . , θn].

The manifold M is called the support of M or the underlying manifold,
a section f ∈ A(M) is called a function, and the R-superalgebra A(M) will
be denoted C∞(M) as well. We can see that a function f ∈ A(M) is not
determined by its values at its points. A supermanifold can be viewed as an
ordinary manifold for which the sheaf of functions is enriched with odd ones.

A.2. Some examples of supermanifolds

An example of a supermanifold of dimension (m|n) is the affine superspace
Rm|n = (Rm,Am|n) where the sheaf Am|n is given by

Am|n(U) = C∞(U)[θ1, . . . , θn]

for any open subset U of Rm. The supermanifold Um|n = (U,Am|n|U ) where
U is an open subset of Rm and the sheaf Am|n|U is the restriction of the sheaf
Am|n to U is called a superdomain.

If we consider Ω• the sheaf of differential forms on a smooth manifold M ,
then (M,Ω•) is a supermanifold called the antitangent bundle and is denoted
by ΠTM . Likewise if we consider X• the sheaf of multivector fields on M , then
(M,X•) is a supermanifold called the anticotangent bundle and is denoted by
ΠT ⋆M .

A.3. Local coordinates for supermanifolds

If M = (M,A) is a supermanifold, then we have an open cover {Uα} of M
such that

A(Uα) ∼= C∞(Uα)[θ
1, . . . , θn].

Suppose that (x1, x2, . . . , xm) are local coordinates on Uα, then

(x1, x2, . . . , xm, θ1, θ2, . . . , θn)

will be called local coordinates for M. If we restrict the sheaf A to an open
subset U of M , then we get the supermanifold U = (U,A|U ), which will be
called a submanifold of M, where A|U is the restriction sheaf.

Definition. If M = (M,A) and N = (N,B) are supermanifolds, then a mor-
phism F : M −→ N is a pair (f, f∗) such that f : M −→ N is a smooth map
and f∗ : B −→ f∗A is a morphism of sheaves where (f∗A)(U) = A(f−1(U)).
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Consider maps F : M −→ N and G : N −→ P such that F = (f, f∗) and
G = (g, g∗) are morphisms of supermanifolds. Then the composition of F and
G is denoted by G ◦ F and is given by

G ◦ F = (g ◦ f, f∗ ◦ g∗).

The identity morphism denoted by IM = (i, i∗) is the morphism IM : M −→
M given by i(x) = x and i∗(f) = f . A morphism F : M −→ N is said to be a
a diffeomorphism if there is a morphism G : N −→ M such that F ◦ G = IN
and G ◦ F = IM.

Theorem A.1 (Chart theorem, see [8, p. 140]). Suppose that M is a super-
manifold and Um|n ⊆ Rm|n a superdomain with coordinates (yi, ξj). Let (f i)
be m even functions and (ηj) be n odd functions on M such that

(vx(f
1), vx(f

2), . . . , vx(f
m)) ∈ U.

Then, there is a unique morphism (f, f∗) : M −→ Um|n such that

f∗(yi) = f i and f∗(ξj) = ηj .

This means that a morphism between supermanifolds is uniquely determined
by the pullback of the coordinate functions (yi, ξj). Hence, we will write a mor-
phism f : M −→ N with coordinates (xi, θj) on M and coordinates (yα, ξβ)
on N as

f(xi, θj) =
(
yα(xi, θj), ξβ(xi, θj)

)
to mean that

f(x) =
(
vx(y

1), vx(y
2), . . . , vx(y

p)
)

and

f∗(yα) = yα
(
xi, θj

)
, f∗(ξβ) = ξβ(xi, θj),

where x = (x1, x2, . . . , xn). This abuse of notation is very convenient in the
supermanifold setting since it makes the theory of supermanifolds similar to
that of ordinary manifolds.

A.4. Vector fields on supermanifolds

Consider a supermanifold M = (M,A), and an open subset U of M . Let
X : A(U) −→ A(U) be an R-linear map. Then we say that X is even if it

preserves parity, that is, X̃(f) = f̃ for homogeneous f ; and we say that X as

odd if it reverses it, that is, X̃(f) = 1 + f̃ for homogeneous f . We say that X

is homogeneous if it is even or odd. In this case its parity X̃ is defined to be
equal to 0 if it is even and equal to 1 if it is odd. Hence for a homogeneous

map X we have X̃(f) = X̃ + f̃ for any homogeneous function f .
A homogeneous derivation onA(U) is a homogeneous R-linear mapX : A(U)

−→ A(U) such that

X(fg) = X(f)g + (−1)X̃f̃fX(g)
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for homogeneous functions f and g. Then the space of derivations on A(U)
which we denote by Der(U) is given by Der(U) = Der0(U) ⊕ Der1(U), where
Der0(U) and Der1(U) are the spaces of even and odd derivations respectively.
We can see that Der is a sheaf with respect to restrictions, and will be called
the tangent sheaf. The space of derivations Der(M) which is a C∞(M)-module
will be called the space of vector fields on M, and will be denoted by X(M)
as well. If (xi, θj) are local coordinates on M, then a vector field X on M is
expressed locally as

X =
∑
i

ai
∂

∂xi
+
∑
j

bj
∂

∂θj
,

with functions ai, bj , where the operators ∂
∂xi and

∂
∂θj are the R-linear operators

given as follows: ∂
∂xi (fθ

I) = ∂f
∂xi θ

I where f ∈ C∞(M), and ∂
∂θj (θ

jf) = f ,
∂

∂θj (f) = 0 when f does not contain θj . The space X(M) is a locally free
module, and it is a super Lie algebra for which the Lie bracket is given by

[X,Y ] = X ◦ Y − (−1)X̃Ỹ Y ◦X

for homogeneous vector fields X and Y .
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