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SIGN CHANGES OF THE COEFFICIENTS OF TRIPLE
PRODUCT L-FUNCTIONS

HUIXUE LAO AND FENGJIAO QIAO

ABSTRACT. Let f(z) be a primitive holomorphic cusp form and g(z) be a
Maass cusp form. In this paper, we give quantitative results for the sign
changes of coefficients of triple product L-functions L(f X f X f,s) and
L(f x fxg,s).

1. Introduction

Triple product L-functions are important automorphic L-functions. In this
paper, our main objective is to study the sign changes of coefficients of triple
product L-functions. We consider the holomorphic cusp forms or Maass cusp
forms for the full modular group SLy(Z) which are eigenfunctions of all the
Hecke operators T;,. We denote Hj; by the set of all normalized primitive holo-
morphic cusp forms of weight k, where &k > 2 is an even integer. More precisely,
for f € H};, we have

1) = 3" Aslnjn = 72,
n=1

where Af(n) € R is Hecke eigenvalues of T;,. It is known that A;(n) satisfies
the multiplicative property

(1) Ap(m)As(n) = Y7 Xy <7Z;1>

d|(m,n)

where m,n > 1 are integers. In 1974, Deligne [4] proved the Ramanujan-
Peterson conjecture

(2) [Ar(n)] < d(n) < nf,

where d(n) is the Dirichlet divisor function.
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Let M} be the set of normalized primitive Maass cusp forms of Laplace
elgenvalue A=7 L 42 For g € M}, we write its Fourier expansion at oo as

Z n)VGK ir (2m[nly) ™,

where K, is the K-Bessel function and Ag(n) € R is the n-th eigenvalue of the
Hecke operator. The current best estimate is

(3) A (n)] < nitd(n) < noite,

which is due to Kim and Sarnak [16, Appendix 2].

A series of articles in the literature are devoted to investigations in the
number of sign changes of Fourier coefficients. The number of sign changes
of the sequence of Fourier coefficients at prime numbers was first studied by
Murty [31]. Moreover, there exists a small positive number 6 such that the
number of sign changes for p < z is at least az? for some a > 0. Meher and
Murty [30] focused their attention on the sequence of Fourier coefficients of
cusp forms and proved that the sequence {Af(n)} has at least one sign change
for n € (z,z + 7). For two different non-trivial cusp forms f € H 5, and
h € Hj , Kumari and Murty [20] got the lower bound of the number of sign
changes of {A¢(n)An(n)}. They showed that the sequence {\f(n)\s(n)} has at
least one sign change for n € (z, 2 +2'~%] for sufficiently large z and & > %. In
addition, Banerjee and Pandey [1] and Lowry-Duda [27] studied sign changes
of {As(n)} on indices which are sums of two squares. Our first aim is to prove
the following two theorems for f € Hj .

Theorem 1.1. Suppose f € H} and Ay« pxs(n) is the Dirichlet coefficient of
L(f x fx f,s). Then

(i) for any &1 with 333 < &y < 1, the sequence {\fxpxs(n)} has at least one
sign change for n € (x,x + x°] for sufficiently large . Moreover, the number
of sign changes for n < x is > x'~%;

(ii) for any 02 with 2083 < 85 < 1, the sequence {Ajxsxs(n) : n = ? +
d?,(c,d) € N?} has at least one sign change among indices n = ¢ + d* with
n € (r,x + x| for sufficiently large x. Moreover, the number of sign changes

forn < xis>x' %,

Remark 1.1. By comparison, % < % Hence (i) of Theorem 1.1 improves

the result of Theorem 1.4 in Hua [10].

Theorem 1.2. Assume the Generalized Lindelof Hypothesis. Suppose f € Hj;
and Ny ¢xf(n) is the Dirichlet coefficient of L(f x f x f,s). Then for any
83 with &+ < &3 < 1, both the sequences {Arxpxs(n)} and {Ajxyxp(n) :n =
¢ 4+ d?, (c,d) € N2} have at least one sign change for n € (x,x + %] for
sufficiently large x. Moreover, the numbers of sign changes for n < x are both
> g1,
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Recently, much attention is drawn to Maass cusp forms. Jiang et al. [15]
showed the mean value connected with Fourier coefficients of Maass cusp forms.
And Liu et al. [26] investigated the power moments of automorphic L-function
attached to Maass cusp forms. For g € M, Tang [35] established the upper
bound of a shifted convolution sum of ds(n) and Ay(n). Hafner and Ivi¢ [7]

proved that > _ Ag(n) < 2%. Further more, Lii [28] successfully improved

Don<a Ag(n) < 228577 Lii’s approach seems to be flexible enough for the
study of more general correlations sums associated with Maass cusp forms.
More recently, Kumari and Sengupta [21] proved the sequence {\g(n)An(n)}
has infinitely many changes for g and h being two Maass cusp forms.

Our second aim is to obtain quantitative results for the sign changes of
coefficients of triple product L-function L(f x f x g, s) attached to f € H;} and
g e M:.

Theorem 1.3. Suppose f € H}, g € M} and Ajxfxqg(n) is the Dirichlet
coefficient of L(f x f x g,8). Then

(i) for any 64 with £7 < 6, < 1, the sequence {Afx xg(n)} has at least one
sign change for n € (x,x + x%1] for sufficiently large x. Moreover, the number
of sign changes for n < x is > x1%;

(ii) for any 05 with 3 < &5 < 1, the sequence {Afxfxg(n) : n = ¢ +
d?,(c,d) € N2} has at least one sign change among indices n = ¢ + d* with
n € (z,x + %] for sufficiently large x. Moreover, the number of sign changes

forn <z is> 219

This paper is organized as follows. In Section 2, we recall some fundamen-
tal facts of L-functions and give some definitions. In Section 3, we introduce
analytic properties and individual and convexity bounds of L-functions. We
also give the main tools which we need in the proofs. Inspired by Lowry—Duda
[27, Theorem 3], we establish the general criteria to detect sign changes. In
the last three sections, we will prove Theorem 1.1-Theorem 1.3 by Lemma
3.7. In order to fit the conditions of Lemma 3.7, it’s necessary to calculate
the bounds of partial sums of the coefficients Ay s« r(n)r(n), )\fcxfxf(n)r(n),
Afxfxg(n)r(n) and A, ;. (n)r(n). In Section 4, the main techniques are the
factorization of an automorphic L-function into a product of L-functions of
lower ranks. Then we use Perron’s formula and Cauchy’s residue theorem for
the proof of Theorem 1.1. The detailed method was nicely and extensively
discussed in Theorem 1.2 in [29]. In Section 5, under the Generalized Lin-
del6f Hypothesis, Lowry—Duda [27] assumed the strongest conjectured bounds.
Based on this, the proof of Theorem 1.2 follows from the same line of proof
of Theorem 2 in [27] and Theorem 1.2 in [29]. That means we also apply
Perron’s formula and Cauchy’s residue theorem. The difference between the
proof of Theorem 1.1 and Theorem 1.2 is that we will take advantage of the
Generalized Lindel6f Hypothesis. In Section 6, we firstly decompose the cor-
responding Dirichlet series into a product of automorphic L-functions and a
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simpler Dirichlet series. Then we will prove Theorem 1.3 after applications of
Landau’s Lemma and Lemma 3.9.

2. Preliminaries on L-functions

In this section, we give definitions and recall some fundamental facts of
L-functions. The L-functions related to g € M is the same as L-functions
involving f € Hj. For convenience, we just give the definitions of L-functions
related to f € Hj.

2.1. Hecke L-function

Let L(f, s) be a Dirichlet series associated to f € H} which admits an Euler
product, given as
o0

for Re(s) > 1. By the work of Deligne [ ] we have

_ a1y Bip)y 1
L(f,s>—1;[(1 o) A=)

where o (p) and B¢ (p) are two complex numbers, such that

(4)  Aplp) =oap(p) + B5(p),  ap(p)Br(p) = lay()l = 1Bs(p)| =
For g € M}, by Kim and Sarnak [16, Appendix 2], we have

(5) lag () |< P75, 1By(p) < P,
where we use a4(p) and B4(p) for the similar meanings as a¢(p) and Sr(p).

2.2. Symmetric power L-function

We define the jth symmetric power L-function as

(6) L(sym’f, s) H H p)~ "fﬁf( p)™ ) 1

s
p m=0 p

for Re(s) > 1. And L(sym’ f, s) can be represented as a Dirichlet series

- o~ Asymi £(17)
oymi )= 37 o
n=1

[0y el

where Agymif(n) is a real and multlphcatlve function. Then one checks that

(7) Ay £ (D) = D ap(p)! 7" Br(p)™ = Ap(p).

m=0
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Let x be a Dirichlet’s character modulo g. Then we define the twisted jth
symmetric power L-functon as

L(Symjf X X 8)

HH 5f( )" X (p))—l.

S
p m=0 p

It’s easy to see that

L(sym®f x x,s) = L(x, s),
L(sym'f x x,5) = L(f x x, 5).

2.3. Rankin Selberg L-function

The Rankin-Selberg L-function associated with sym®f and sym?g is defined
by

L(symif x sym’ g, s)

HHH »3f()‘ a(p)? 7" By(p) )

S
p m=0n=0 p

L(sym'f x sym7g, s) can also be written as

L(sym'f x sym7g, s)

oo
_ )‘symif XsymJ g (n)
Z ns
n=1

H 1+Z sym szmeg(pk)).

Then we get
/\symif ><symj g (p)

(8) = Z Z ar(p)' " Br(p) "oy (p)’ " By(p)”
m=0n=0

= /\symi’f (p) Asymjg(p) .
We define the Rankin—Selberg L-function of sym’f and sym7g x y as

L(sym'f x sym’g x x, s)

— H H H (1 B O‘f(p)“mﬂf(p)mag(p)j*"ﬂg(p)nx(p))71.

S
p m=0n=0 p
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2.4. Triple product L-function
For Re(s) > 1, the triple product L-function is defined as

L(fx fxfs)
_ c- Apxfx(n)
_ Cap(P)Py-1, ap)\-3,, Brp)y-s,,  Br(p)? -1

where the coefficient Afy ¢« r(n) is real and multiplicative. From (4), we know

9) )‘fxfxf(p) = )‘?f(p)~
(1), (2) and (9) show that
(10) /\f><fxf<n) <« nc.
For f € H} and g € M, we define
L(fx fxg,s)
_ i Afxfxg(n)
aw o Cap(p)Pag(p)\ -1, agp)\-2,,  Br(p)ay(p)\ -1
Cas(p)?By(p) -1, Bep)\-2,,  Br(p)*By(p)\ 1
X (]‘ ps ) (]‘ ps ) (]‘ ps ) °

(11) implies that
Afxfxg(D)
= a;(p)®ay(p) + 2ay(p) + Br(p) ag(p) + ar()*By(p) + 284 (p) + Bt (0)* By (p).-
In view of (4) and )\?c(p) = as(p)? + 2+ B¢(p)?, we show
Afxfxg(p) = /\?f(p)/\g(p)-
By (2), (3) and the multiplicative property of Afx rxq(n), we find that
(12) )\fxfxg(n) < TL%+E.

If we want to get the number of sign changes of the sequence {A¢xfx¢(n) :
n=c?+d? (¢,d) € N*}, we need to consider the summations

Sl(ac) =: Z )\fxfxf(02+d2)7
n=c2+d?<z

So(@) = Y Npusl+d?)
n=c2+d?<z

forx > 1and ¢,d € Z.
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For integers m > 0 and k > 2, we define
re(m) = t{(n1,n2,...,nk) € Zk,n% +n§ + Jrnﬁ =m},

which has been widely concerned. For k = 2, we have
m) =43 va(d),
dlm

where y4(d) stands for the non-trivial Dirichlet character modulo 4, and we
have x4(m) = sin "T. As a consequence, Si(x) and So(x) can be viewed as

= > Apxsxp()ra(n),

n<zx

Z)‘fxfxf ( )

n<x

respectively. We write r(n) for

(13) r(n) = *7“2 Z xa(d

d|n

It is obvious that
(14) rip) =1+xa(p),  7(P*) =1+ xa(p) + xa(p?).
3. Auxiliary lemmas

3.1. Analytic properties, mean values and subconvexity bounds for
L-functions

Recently, Newton and Thorne [32, Theorem A] proved the automorphy of
all symmetric powers for cuspidal Hecke eigenforms of level 1 and weight k > 2.
More precisely, for j > 1 and f € Hj, the L-function L(sym’ f, s) attached to
sym’ f is automorphic. Then we derive the following Lemma.

Lemma 3.1. Let f € H}, and the jth symmetric power L-function L(sym’ f, s)
is defined by (6). For j > 1, L(sym’ f,s) has an analytic continuation as an
entire function in the whole complex plane C and satisfies a certain functional
equation of Riemann zeta-type of degree j + 1 (see Lemma 1 in [37]).

From the above Lemma and Section 2.2 in Jiang and Li [13], we know
L(sym? f, s) and L(sym? f x x, s) are general L-functions in the sense of Perelli
[34] for j > 1 and f € H}}. By standard arguments in analytic number theory,
the mean values and convexity bounds for L(sym’f,s) and L(sym’f x x,s)
were established.

Lemma 3.2. Suppose that f € H} and x is a primitive character modulo g,
then for any € > 0, we have

2T
/ |L(sym? f, o + it)|?dt < TG+ (A—0)+e
T
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j+1

L(Sijf’ o+ it) < (|t| + 1)%(1—0)+5’
2T ' |
/ |L(sym? f x x, 0 +it)|?dt < (qT)0+DA-o)+e,
T

L(sym? f x x, 0 +it) < (g(|t] +1)) 7 1=+
uniformly for % <o< 14¢,T>1andlt| >1.

Proof. The first two assertions followed from Lemma 3.2 in Lao and Luo [23]
for m = j+ 1, and the last two assertions were seen in Lemma 2.4 in Jiang and
Li[13] for J=1,n;=0,my=jand N =j+ 1. O

For some small degree L-functions, we invoke individual or averaged sub-
convexity bounds.

Lemma 3.3. For any € > 0, then we have

T 5 12 1
/ [C(5 +it) [Tt < T
0

and
C(o+it) < (|t| + 1)32(1-)te
uniformly for T > 1, % <oc< l+4+cand|t|>1.

Proof. See Theorem 8.4 and (8. 87) in [11], Theorem 5 in [2], respectively. O

Lemma 3.4. Let f € H} and any € > 0, then we have
T 5 4 1
/ |L(f,g +it)| dt < T
0

and
L(f,0 +it) < (|t| + 1)50-0)+=
uniformly for T'> 1, % <o< l+4+cand|t|>1.

Proof. These are Theorem 2, (1.8) in [12] and Corollary 3 in [6], respectively.

(I
Lemma 3.5. Let f € H} and any € > 0, then we have
L(sym?f, o +it) < (|t| + 1) (1-)+=
uniformly for $ <o < 1+¢€ and |t| > 1.
Proof. See Corollary 1.2 in [25]. O

On the basis of the subconvexity bounds given by Heath-Brown [9] and Kuan
[19], using the phragmen-lindeldf principle, Xu [36] proved the following two
results.
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Lemma 3.6. Let f € H} and x be a primitive character modulo q. For any
e>0 and t> 1 with g < t?, we have

L(x, 0 +it) < (q(t] +1))50 =)+
and ,
L(f x x,0 +it) < (q(Jt]| + 1))5 1 =7)F=
uniformly for % <o< l4eandlt|>1.

By Kim [17], 7 is an automorphic cuspidal representation of GL2(Q4). It’s
known that sym”r is an automorphic representation of GLj11(Q4). For k = 2,
Gelbart and Jacquet [5] proved that sym?r is cuspidal if and only if 7 is not
monomial. For k = 3, by Kim and Shahidi [18], sym®r is cuspidal if and only if
7 does not conform to a dihedral or tetrahedral Galois representation. For k =
4, sym*7 is either cuspidal or unitarily induced from cuspidal representations
of GL3(Qa) and GL3(Qa) by Kim [16]. For 1 < ¢ < j < 4 and g € M},
L(sym?g, s) and L(sym®’g x sym’g, s) are automorphic. Thanks to the work of
Lii and Sankaranarayanan [29], in which it is established that the triple product
L-function is closely related to GL3(Q4)xGL2(Q4) L-function L(sym?f x f, s),
namely L(f x f x f,s) and L(f X f X g, s) are automorphic.

3.2. Main tools used in the proofs

In this part, we collect some Lemmas which will be used in our proofs. Based
on the work of Lowry—Duda [27, Theorem 3], we give the following Lemma to
detect sign changes.

Lemma 3.7. Let w(n) > 0 denote a system of non-negative weights. Suppose
a sequence of real numbers {a(n)} satisfies

(i) a(n) = O(n**e),
(i) 3c, a2(n)w(n) = 7 P (log ) + O(a™2),
where «, 8,y and 1 are positive real constants and P, (t) is a polynomial of
degree m. Then for any § with
(15) max(a+ 8,m) = (y—1) <é <1,

the sequence {a(n)} has at least one sign change for n in the interval (z,x +1°)
and all © > 1. Moreover, the number of sign changes for n < x is greater or
equal to z' 9.

Proof. Suppose a(n) is positive for all n € (z,z + 2°]. We choose

(16) L it =) ~max(ea+ Bm)
2

By conditions (i) and (ii), we conclude

Y amiwn) <2t Y a(n)w(n) <z
z<n<z+ad z<n<z+ad
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Then (15) and condition (iii) imply that

Y a(n)w(n)

z<n<atad
= (x4 2°)Y P, (log(z + 2°)) — 27 Py, (log ) 4+ O(z"*9)
= (27 + 42770 L O(27722)) . P (log(x + 2°)) — 27 P (log ) 4+ O(279)
— 40727 (log )™ + O™+ (log 2)™ 1) + O(a7+*)
> g1

where ag is the coefficient of t™ in P, (¢) and § + (y — 1) > n + € according to
(16). These two inequalities imply 27~ '+% < £+8+2¢ which is in conflict with
the original assumption. Thus a(n) changes sign at least once for n € (x, z+27].
The number of sign changes is obvious and can be obtained immediately. [

Lemma 3.8. Let g € M}, then

[0+ g (P)[" + Iﬂg(p)\")

» p
converges for o >1 and 0 <n < 8.
Proof. See Lemma 2.2 in [24]. O

The following Lemma is a special circumstance of Theorem 4.1 in [3] in the
case when

Mn:)\n:na an:bn:C(n)a A:4a P:& 6:17 q= —0.

Lemma 3.9. For f € H}}, g € M} and ¥ > 0, we have

Y cmy=o@Est) o S [Cw)),

7
n<z r<n§fc+z§7§

where we take C(n) as Afxfxg(n) and Xy pxq(n)ra(n).

After the application of Landau’s Lemma, we will make use of this Lemma
to calculate the mean value of Afy rxg(n) and Agx pug(n)ra(n).

4. Proof of Theorem 1.1

In this section, we calculate summations of coefficients of triple product
L-functions to satisfy the conditions of Lemma 3.7.

Our first goal, however, is to replace a complicated Dirichlet series with a
simpler one for a controllable discrepancy. For Re(s) > 1, we write

s () N s ()
Li(s) = 3 5= = [T 0+ > ==0—).
n=1 P k>1
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For f € Hj, Li and Sankaranarayanan [29] proved

L(f x f x f,s) = L(f,s)*L(sym®f, s)
and
Li(s) = ¢(s)°L(sym® f, s)*L(sym* f, 5)* L(sym®f x sym* f, s)U1(s),
where the function Uj(s) is a Dirichlet series and absolutely convergent for
Re(s) > % and Ui(s) # 0 for Re(s) = 1.
Theorem A in [32] implies that the L-function L(sym’f,s) is automorphic

for j > 1 and f € H}}. And one should note that for a holomorphic cusp form
f(2), L(sym?f x sym*f, s) = L(sym?f, s)L(sym*f, s) L(sym® f, s). So we have
(17) Ly(s) = ¢(s)°L(sym® f, s) L(sym™ f, s)° L(sym® f, s) U1 (s),

where the function Uj(s) is a Dirichlet series and absolutely convergent for

Re(s) > 3 and Uy (s) # 0 for Re(s) = 1. Motivated by this and [22], we can
determine the following proposition.

Proposition 4.1. Let f € H} and x4(n) be the non-trivial Dirichlet character
modulo 4, we define Lo(s) and L3(s) as

o) =Y M

and
Lg(s) = i M

n=1

for Re(s) > 1. Then we have

La(s) = L(f,5)*L(f x xa, )" L(sym® f, s) L(sym® f x x4, 5)Uz(s)
and
L3(s) = ¢(8)°L(xa, 8)° L(sym? f, s)° L(sym?®f x x4, s)°L(sym?f, s)°
x L(sym*f x x4, 5)° L(sym® f, s) L(sym® f x x4, 5)Us(s),
where Us(s) and Us(s) are Dirichlet series and absolutely convergent in the half

plane Re(s) > 5 +¢.

Proof. Since Agx pxf(p) and A%, . ;(p) are multiplicative and satisfy the trivial
upper bound O(n¢), we have

LQ(S) = H (1 + Afxfx;ip)r(p) + Afxfx;(;f)r(p2) + - )
and \2 (p)r(p) A2 ( 2)r( 2)
Ly(s) = [ (1 + 22 2P0 Do POTRD

p? p
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(4), (7) and (9) imply that
)‘foXf( ) = X} (p) = af(p) + 3ay(p) + 365 (p) + B1(p) = 2X5(P) + Asyms £ (1)-
y (4), (7) and (8), we can easily find that
/\foXf(p)T(p) = (2A5(p) + Aymar (p)) (1 + xa(p))
=20;(p) + 227 (P) X X4(P) + Asyme £ (P) + Asyma s (P) X xa(p)
=:01(p)
and
M pxr@)(0) = X5 (D) + Asyms £ ()% - (1 + xa(p))
= (4NH(D) + Aoz () + 4X s (D) Asyms £ (P)) - (1 + xa(p))
=41+ Asym2(p)) - (1 + xa(p))
+ (L4 Asymz £ (P) + Asym£(P) + Asyms £ () - (1 + xa(p))
+ 4(Asym2 7 (P) + Asyma £ (P)) - (1 + xa(p))
=5+ 5x4(p) + eym2 7 () + Isym2£(p) X Xa(p) + 5Asym5(p)
+ 5Asyma £ (P) X Xa(P) + Asyme £(P) + Asymo £ (p) x xa(p)
=: ba(p),

where

L(f,8)*L(f x x4, 8)*L(sym®f, s) L(sym®f x x4, s) =: Z

and

C(S)SL(X47 5)5L(sym2f, S)QL(Smef X X4, S )gL sym4f,

=3
Then we have
Lo(s) = L(f,8)°L(f X xa,8)*L(sym® f, s) L(sym® f x x4, s)

L M )pg(g b))

= L(f,8)?L(f x x4, 8)>L(sym®f, s)L(sym® f x x4, 5)Us(s)

and
Ls(s)
= ((5)°L(x4, 8)°L(sym®f, 5)° L(sym®f x x4, )? L(sym™f, s)° L(sym* f x x4,5)°

2 2 2 2
< Hlsymi®f ) Lsymt®s < xa, ) [ (1 20t VTV TR0

= ((5)°L(xa, 5)° L(sym® f, s) L(sym® f x x4, )" L(sym® f, 5)° L(sym* f x x4, s)°
x L(sym® f, s)L(sym® f x xa,5)Us(s).
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With the help of (2), we know Us(s) and Us(s) are Dirichlet series and abso-
lutely convergent in the half plane Re(s) > 4 +¢. Then Proposition 4.1 follows
from the above identities. g

Then by Perron’s formula and Cauchy’s residue theorem, we arrive at

D Apxpxs(n)ra(n)
n<lzx
A 1+e4iT

T8 x1+e
= — L —ds+ O
2mi 1+e—iT 2(8) S 5 ( T )

5 , , 5 ,
4 §+5+1T 14+e+4T §+5—1T 5 .Z'1+E
_ 4y +/ +/ VLa(s)=ds + O(Er)
2mi S4te—iT SetiT 1+e—iT S T
xl-i—a

T )

where 1 < T < z is a parameter to be chosen later. Using Cauchy’s inequality
and Proposition 4.1, H; becomes

H,y

:H1+H2+H3+O(

T
< x§+s/ IL(f, g +e+it) L(f x X4,g+€+it)2L(sym3f,g+€+it)
1

x L(sym®f x xu, g +e+ it)UQ(g Fetit)|tTldt +a ¥t

1 5 5
< xite logT%u%)% {iL(f X Xtr g +e+ iTl)QL(sym3f, 3 +e+iTh)
i 5 ENTERC 3 5 INEIRS
x (/T [L(f, 2+ +it) dt)z(/T Ly x xa, 2 + e +it) ) )
1 1
2 2
+aite,
Now depending on Lemma 3.2, Lemma 3.4 and Lemma 3.6, we deduce that
H, < g8tepatitati-lte | 8+ o pitepite | p8+e « pitepite
For Hs + Hj3, we have
14
Hy + H3 < / 2 |L(f,0 +iT)*L(f x x4,0 4+ iT)*L(sym?®f, o + iT)
24e
x L(sym®f x x4,0 +iT)|T  do
14¢ ~
<« max gTFO-otep-l T 4 Shepite
%—&-Egagl-i-e T
which is bounded by Lemma 3.2, Lemma 3.4 and Lemma 3.6.
Now taking T = z30, Y on<a Afxpxf(n)ra(n) turns into

(18) > Mxpxp(n)ra(n) < a%+e,

n<z
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By Perron’s formula and Cauchy’s residue theorem, we have

Z/\fxfxf ( )

n<x
4 1+4e+iT e plte
= — L —ds+ O
211 14e—iT 3(3) S S ( T )
4 Zqetil 1+e+iT 24e—iT s
(19)  — zPy(logx) + — (/ +/ +/ >L3(S)xd5
2m S qe—iT S et 1+e—iT $
plte
+0( 7 )

14+¢
= Py(log) + J1 + o + Jy + O(),

where 1 < T < z is a parameter to be chosen later and Py4(t) is a polynomial
of degree 4. For J1, by using Holder’s inequality and Proposition 4.1, it follows
that

Ji
s [ /5 5 5 N 0, b N9
< z* [C(5 +e+it) Lxa = +e+it) L(sym’f, -+ +it)
1

xL(smefo4, —|—€—|—Zt)

7
5
§+e+ﬁfL

5
? +€+it)U1

- 5
< a7t logT%?g)%{ L(X4, -

m
m6f, +6+zt)

7
5 N9
= +E—|—zt) L(sy
x L(sym*f x yu, (sy
(

x L(sym°f x xu, +€—|—zt)|t R

tetiTy)’ L(smef, te+ily)’

é +e +iT1)9L(sym4f X X4, 5 +e+ iT1)5

L 2
X (Symf><><4,7 -

T
L(Symﬁf, +€+ZT1)(/ 1 |L(sym4f, $+€+i7f)|60dt)ﬁ
71

T,

x (/TZ !C(g—i—a—i—it)‘ dt)l%‘(/Tl

Loy f x xa, 3 + <+ if) ) )

2

+m%+5.

In virtue of Lemma 3.2, Lemma 3.3, Lemma 3.5 and Lemma 3.6, we estimate
the above terms and deduce that

Ji & gt RAEEHF ARG 114 | S

L pPTeTE te 4 gt e
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For Js and Js, by Lemma 3.2, Lemma 3.3, Lemma 3.5 and Lemma 3.6, we have

Jo + J3

14¢
<</ 2°|¢(0 +iT)5 L(xa, 0 + iT)° L(sym? f, o + iT)°
S+

x L(sym?f x x4,0 +iT)° L(sym*f, o +iT)° L(sym® f x x4, 0 + iT)®
x L(sym®f, o +iT)L(sym®f x x4, 0 +iT)Us(co + iT)|T " do
2083 1+

< . max 2T 55 (1- a)+sT < 7 +$7+ET 294214-5
7+ESUS1+€

Now taking T = m%, A2 n)re(n) turns into
n<z “fXfXf
(20) > X s (m)ra(n) = wPy(log ) + O (a i +)

n<x
By (10), (18) and (20), we show that & = 0, 8 = I, v = 1 and n = 228,

Therefore, max(a+ 8,7) — (y—1) = 3832 < 1. Thus we can apply Lemma 3.7
with a(n) = A« ¢xf(n) and w(n) = r(n) to obtain the number of sign changes
of {A\rxrxf(n):n=c?+d? (c,d) € N°}.

For the first result of Theorem 1.1, we also need to consider the summations
of the coefficients Ayx rxs(n) and A7, ;, ;(n). Lil and Sankaranarayanan [29]

proved

(21) Z Apxfrp(n) < ziote
n<lxz
and
(22) S N (n) = wPa(log ) + O («F¥+7)
n<x

Noting (17) and by the similar argument in [29], we can improve (22). By
Perron’s formula and Cauchy’s residue theorem, one can easily find that

D Nixrxs(n

n<z
4 1+4+e+iT 5 z1+5
= — Li(s)—ds + O )
27 14e—iT S T
4 S4etiT 1+e+iT Se—iT 28
= zPy(logx) + —(/ +/ +/ YL1(s)—ds
2mi S4e—iT S 4etiT 1+4+e—iT S
plte
O
+0(*)

plte
= IP4(10g93) + 1+ I+ I3 —|—O( T
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where 1 < T < z is a parameter to be chosen later and P4(t) is a polynomial
of degree 4. For I;, Holder’s inequality and Proposition 4.1 allow us to write

I < x%“rs/ ]g( + & +it) L(smef,g+€+it)9L(sym4f,g+5+it)5

L(sym f= —|—€—|—zt)U1( —|—5—|—zt)|t Lt 4 p7te

T
< prte longaX{ L(symzf, +5+ZT1) (/T1|§(;+5+it)|12dt)%
L1

2

EhR

T 5 60 ;.\
X (/ ‘L(sym‘lf,?—l—s—l-it)’ dt) 2

2

T
X (/3 |L(sym®f, = +5+zt)| dt) }.

2

In virtue of Lemma 3.2, Lemma 3.3 and Lemma 3.5, one has
[1 < x%"'_eT%"_%J’_%"’_l_lJ’_s + Jj%+6 < x%+ET%7()I+E + x%"’_s.
For I5 and I3, we apply Lemma 3.2, Lemma 3.3 and Lemma 3.5 to arrive at
I+ 13
1+e
< / 27|¢(o +iT)° L(sym? f, 0 +iT)° L(sym* f, o +iT)° L(sym® f, o + iT)
24e
7
x Uy (o +iT)|T~ do
5953 It+e

< max 2T 210 (1—o)+ep—1 < € + $7+5T 10436 e
fte<o<lite T

By taking T' = x93, > n<a N px (1) turns into

P )
n<lz

(10), (21) and (23) satisfy the conditions of Lemma 3.7, i.e., « = 0, 8 = 10’

vy=1and n= % Hence max(a+ 3,1m) — (y— 1) = gggg

get the first result of Theorem 1.1 by taking w(n) = 1.

5. Proof of Theorem 1.2

To prepare for the applications of Lemma 3.7, we will also calculate the sum-
mations of coefficients of triple product L-functions. Suppose the parameters
ﬁl? 527 N1y M2 SatiSfy

1 (T 1
—/ \L(symjf,f + e +it)|2dt < TP e,
(24) T

(syrnﬂf, +e+it) < [tPTE,
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1 [T . 1 ,
f/ [Lisym? f x xa, 5 + & +it)dt < T™*,
(25) 1

. 1
L(sym’ f X x4, 3 + e +it) < |t

Using (24) and (25), we have a new representation for the upper estimate of
Y o<z )\?Xfxf(n)rg(n) in (19). For Ji, (24), (25) and Proposition 4.1 yield

J1 K x%+ET1962+19n2+%+%+6.

For J, + Js, one has

1+e¢

Jot Js < xr + m%+sT20ﬁ2+207]2—1+6.

Let

0 = max (1985 + 197, + é -‘r 20ﬂ2 +20my — 1).

17 .
Taking T' = £20+% | we obtain

1
Ji+h+ I3 K REEICE RS

By the Generalized Lindel6f Hypothesis and Theorem 1 in [33, pp.63], we
have 1 = 2 = 11 = n2 = 0, which means § = 0. Hence we derive

(26) Ji+ Jy+ Js < z7te
Taking (26) into (19), we finally deduce
1
(27) Z)‘foXf ra(n) :$P4(1Og33)+0(m2+5) )
n<x

According to Perron’s formula and Cauchy’s residue theorem, we conclude

1
(28) D Apspxp(n)ra(n) < wzte.
n<zx
Combining (10), (27) and (28), we know a =0, 3 = 3, v = 1 and n = 3.
These results satisfy max(a+ 8,n) — (y—1) = % < 1. Hence the second result
of Theorem 1.2 follows from Lemma 3.7 by choosing w(n) = r(n). In order to
eliminate repetitive typing, for the other result, we shall not give the proof.

6. Proof of Theorem 1.3

For Theorem 1.3, we also need Lemma 3.7. To invoke our conditions, we shall
calculate Y5 . Apxpxg(n)ra(n) and 35, A7, ;. (n)ra(n) for the number of
sign changes of { A\ fx rx4(n) : n = c2+d?, (c,d) € N?}. Since the bound of \,(n)
is not n° in the case of Maass cusp forms, Perron’s formula is not available at
all. To prove Theorem 1.3, we will take advantage of Landau’s Lemma.
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Proposition 6.1. For f € H, g € M} and x4(n) being the non-trivial Dirich-
let character modulo 4, we define

f/l(s) —. i /\?”fog(n)

n=1 n’
and
. N2 (n)r(n)
. fxfxg
Then

Iy (s) = C(s)QL(smef7 s)‘n’L(sym‘Lf7 s)L(sym?g, s)QL(smef x sym?g, s)3
X L(sym4f x sym?g, $)Us(s)
and
iQ(S)
_ 2 2 2 3 2 3 4 4
= ((5)°L(x4,8)°L(sym* f, s)° L(sym® f x x4, )" L(sym" f, s) L(sym" f X xu, 5)
X L(syrr12g7 S)QL(syng X X4, s)QL(smef x symZg, S)SL(sym4f x symZg, s)
X L(sym2f x sym2g X Y4, s)?’L(sym4f x sym2g X Y4, $)Us(s),

where Us(s) and Ug(s) are Dirichlet series and absolutely convergent for
Re(s) > 3.

Proof. By the multiplicative property of )\?cxfxg(n)r(n), Ly(s) has an Euler
product

200 La(s)=]1 (1 + Afxfx;s(p)r(p) + ANX;(QZ iR >

p

Applying (4), (7) and (8) again yields the following equations

M rxg®@)r(p)

= (Ag(p) + Asymzyxg()* (1 + x4(p))

= (A2(P) + A2z g (P) 4 229 (D) Asym2 g () (1 + Xa(p))

= (24 3Aqym27(P) + Asym 7 (P) + 2Asym24 (P) + 3Asym? £ xsym24 (P)
+ Asym* fxsym2g(P)) X (1 + xa(p))

= 2+ 2x4(p) + 3Asym27(P) + 3Asymzs (P)Xa(P) + Asyms £ (P)
+ Asymit £ (D) X4(P) + 2Asym24 (D) + 2Asym24 (P) X2 (D)
+ 3Asym? fxsym2g(P) + Asyma fxsym2g(P) + 3Asym? rxsym2¢ (P) x4 (P)
+ Asymt f xsym?g (P) X (P)

=: ¢(p),

(30)
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where
C(s)*L(x4,8)* L(sym® f, ) L(sym* f x xa,)* L(sym" f, s) L(sym" f X x4, 5)
x L(sym?g, s)?L(sym?g x x4, s)?L(sym?f x sym?g, s)*
x L(sym®f x sym?g, s)L(sym?f x sym?g x x4, 5)°
X L(sym4f X sym?g X X4, 8)

For brevity, we write af(p) = ay, Br(p) = By, ay(p) = oy and By(p) = B,-
After a short calculation, we arrive at the following result with (11) and (14)

)‘?xfxg(pQ)T(pQ)
= (ozfcozg + 404?0/; + a?ag + 100/}043 + 1604?0/3 + -+ a?,@ﬁ + 4@?‘,@3
+ a8 B2 + 100482 + 160288 (1 + xa(p) + xa(p?))-
By (7), (8), (14) and the definition of ¢(n), we have the equality
c(p?)
= (a%og + afay +afal + -+ a}By + b8, + a}8]) (14 xa(p) + xa(p”))-
To go further, one derives that
51) M pxg (@) (%) = c(p?)
= (—a} +3afag + ) x (1+ xa(p) + xa(p”)).
(29), (30) and (31) yield
Ly(s)
= ((5)*L(xa, 8)* L(sym® f, s)> L(sym® f X x4,5)° L(sym*f, s)
L(sym*f x x4, 8)L(sym?g, s)?L(sym?g x x4, s)?
L(sym®f x sym®g, s)*L(sym* f x sym®g, 5)
x L(sym?f x sym%g x x4, 8)>L(sym® f x sym?g x x4, 5)
)\2 2 r 2\ c 2
y H(““ Fxixg(P )222? ) —c(@”) +>
p
P
= L3(s)Us(s).

Due to (2), (5) and (31), we show

<<H( bl

(32)
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Lemma 3.8 means that Ug(s) is absolutely convergent for Re(s) > % This

completes the proof of the second result of Proposition 6.1. We can apply the
similar method to deal with L;(s). O

Since L(sym'g,s) and L(sym’g x sym’g, s) are automorphic with 1 < i <
j <4, L-function Ls(s) is entire except for a double pole at s = 1. Lemma 2
in [33, pp.512] and (1.12) in [8] imply that
Zd2 ) < z(log x)?, Z)\Symzf )=cx+ O(x 17te ),
n<x n<x

where ¢ is a constant. Then by the refined version of Landau’s Lemma (see
Corollary 1.4 in [14]) with d = 128 and oy = %, we have

(33) > Mprg() )=xQ1(logx)+O(x%Z+s>7

n<z

where Q1(t) is a polynomial of degree 1. By Lemma 3.9, we know

> Apxprg(n)ra(n)

n<z
(34)
— O(x%‘f‘%’&) +O Z |)\fxf><g(n)r2(n)|
m<n§x+z%7ﬂ
Then we need to consider the bound of ) ven<otai—? [Afx rxg(n)ra(n)]. By
Cauchy’s inequality, we have
> Pyxsxg(nra(n)
_9
r<n<z+x38
3 3
(X panw) < (X nm)
z<n§x+w%_ﬁ w<n§w+x%_ﬁ

Firstly, we shall estimate the first summation >
by (33). Since

(log(a: + ngﬁ)y = (logx + log(1 + a:*é*ﬁ))j

= (logz)’ + O ((log x)? ! -m_é_ﬁ) )

z<n§x+m%7ﬂ )\?‘xfxg(n)TQ (n)

we have
(35) (J; + x%—ﬂ) Q1 (log(x + m%—ﬂ)) — 2Q1 (logz) < rE—U+e
Noting that 53 > I by (33) we can compute

S Nugug(mIra(n) < wfite 4 pi e < gfite,

-0
r<n<z+x38
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Next, for Zx<n<z+z§*0 ra(n), (13) implies
>, mm=4 3 D
T_y 9 d|n
z<n<x+x38 :E<n<a:+w8

Recall that [33]
Z d(n) =z(logz+2y—-1)4+ 0O (x%*%llis log? m) ,

thus we deduce that

S Y@< Y dn) < a0

-9 dln Z-v

m<n<m+18 rz<n<lz+x

Furthermore, we have
S Pwixg(mra(n)] < aft3TE0dte _ gl —ge,
w<n<aotas?
Substituting these back into (34), we conclude
37 Apxpxg(n)ra(n) < pTs T30 4 g —5+e,

n<z

Then we take ¢ = 2 to obtain

512
(36) 3" Axpxg(n)ra(n) < zToste,
n<xz
With (12), (33) and (36), the second rebult of Theorem 1.3 follows from
Lemma 3.7 by a = 614, 8= 1808294, =1L,n=2 and w(n) = r(n), which means

max(a+8,n)— (y—1) =2 < 1.
Similar to (33), we can also use Corollary 1.4 in [14] with d = 64 and 0y = %
to conclude

(37) D Aspxgn —xPl(loga;)+0<x%+s>_
n<z

Furthermore, we infer by Lemma 3.9 that

(383) D A =0 (eFHE) 10| DT Ppegng)]

7
n<x z<n§w+w§70

By using Cauchy’s inequality, we write )

ST D) < ( )

7
e 9

w<n<otaos? [Apxfxg(n)| as

1
2

/\f><f><g( ))
-

r<n<z+x r<n<xz+x
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Noting that 2% > I, by (35) and (37), we find that

ST M egln) <ottt cab

_y
r<n<lz+x38
So we have
Z [Afxpxg(n)] < p O ETIGe — i
T_y
r<n<lx+x8

By putting these bounds into (38), it is evident that

3" Apng(n) < ai6FE0FE 4 gpRimE e,

n<z

Then we choose ¥ = 2L to deduce

256
441
(39) Z Afxpxg(n) < zs27e,
n<x
With (12), (37) and (39), we show that o = 6—74, B = gg, vy=1and n= %,
which means max(a + 3,1) = % < 1. Thus we finish the proof of the first

result of Theorem 1.3 by taking w(n) =1 in Lemma 3.7.
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