In this paper, we investigate the $\mathbb{R}$-complex Hermitian Finsler spaces, emphasizing the differences that separate them from the complex Finsler spaces. The tools used in this study are the Chern-Finsler and Berwald connections. By means of these connections, some classes of the $\mathbb{R}$-complex Hermitian Finsler spaces are defined, (e.g. weakly K$\ddot{a}$hler, K$\ddot{a}$hler, strongly K$\ddot{a}$hler). Here the notions of K$\ddot{a}$hler and strongly K$\ddot{a}$hler do not coincide, unlike the complex Finsler case. Also, some kinds of Berwald notions for such spaces are introduced. A special approach is devoted to obtain the equivalence conditions for an $\mathbb{R}$-complex Hermitian Finsler space to become a weakly Berwald or Berwald. Finally, we obtain the conditions under which an $\mathbb{R}$-complex Hermitian Finsler space with Randers metric is Berwald. We get some clear examples which illustrate the interest for this work.