• Title/Summary/Keyword: wireless channel modeling

Search Result 73, Processing Time 0.026 seconds

Effect of First and Second Order Channel Statistics on Queueing Performance (채널의 1차 2차 통계적 특성이 큐의 성능에 미치는 영향)

  • Kim, Young-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.288-291
    • /
    • 2002
  • We characterize multipath fading channel dynamics at the packet level and analyze the corresponding data queueing performance in various environments. We identify the similarity between wire-line queueing analysis and wireless network per-formance analysis. The second order channel statistics, i.e. channel power spectrum, is fecund to play an important role in the modeling of multipath fading channels. However, it is identified that the first order statistics, i.e. channel CDF also has significant impact on queueing performance. We use a special Markov chain, so-called CMPP, throughout this paper.

Intra-session Network Coding for Improving Throughput in Multi-Radio Multi-Channel Multi-Hop Wireless Networks (멀티라디오/멀티채널 멀티 홉 무선 네트워크에서 처리율 향상을 위한 인트라세션 네트워크 코딩)

  • Seo, Kyeong-Su;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.29-34
    • /
    • 2011
  • We present a network coding scheme which is designed for improving throughput in multi-hop wireless network with multi-radio multi-channel. The co-channel interference and unreliability of wireless transmissions cause the wireless network to reduce throughput. In wireless network, multi-radio multi-channel technology shows benefit to cut down channel interferences and contentions. And network coding can reduce the complexity of scheduling and improve throughput by increasing usage of links in wireless network. In this paper, we propose a method of channel assignment and transmission scheduling in intra-session network coding that efficiently improve throughput for multi-hop wireless network by using mathematical modeling and linear programming. Moreover, we evaluate the performance of the intra-session network coding scheme by using AMPL with CPLEX. The simulation results show that intra-session network coding can achieve better throughput than traditional routing.

Study on Frequency Selection Method Using Case-Based Reasoning for Cognitive Radio (사례기반 추론 기법을 이용한 인지 라디오 주파수 선택 방법 연구)

  • Park, Jae-Hoon;Choi, Jeung Won;Um, Soo-Bin;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.58-71
    • /
    • 2019
  • This paper proposes architecture of a cognitive radio engine platform and the allowable frequency channel reasoning method that enables acquisition of the allowable channels for the military tactical network environment. The current military tactical wireless communication system is increasing need to secure a supplementary radio frequency to ensure that multiple wireless networks for different military wireless devices coexist, so that tactical wireless communication between the same or different systems can be operated effectively. This paper presents the allowable frequency channel reasoning method based on cognitive radio engine for realizing DSA(Dynamic Spectrum Access) as an optimal available frequency channel. To this end, a case-based allowable frequency channel reasoning method for cognitive radio devices is proposed through modeling of primary user's traffic status and calculation of channel occupancy probability. Also through the simulation of the performance analysis, changing rate of collision probability between the primary users' occupancy channel and the available channel acquisition information that can be used by the cognitive radio device was analysed.

On the Performance of STBC/Beamforming Systems for High Speed Trains (고속 열차를 위한 다중안테나 시스템 성능 분석)

  • 이철진;신승훈;최규형;황현철;곽경섭
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.400-405
    • /
    • 2004
  • Recently, MIMO communications are regarded as one of the most promising emerging wireless technologies. This paper investigates MIMO wireless systems and their applications in a railway communication system. We firstly discuss railway communication environments including propagation characteristics and radio channel modeling. Next, we consider channel estimate methods, which is a crucial issue under rapidly varying channel condition due to the movement of trains. Channel estimation methods for MIMO systems are addressed and the effect of estimation error is studied. We also have performed simulations for transmit beamforming system and STBC(Space-time block coding) to investigate the performance of MIMO schemes in railway systems.

Channel Modeling for UWB MB-OFDM System Considering RF Frequency Hopping (RF 주파수 호핑을 고려한 UWB Multi-Band OFDM 시스템 채널 모델 성형)

  • Noh, JungHo;Heo, Joo;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In the case of Non-Line-of-Sight (NLOS), common telecommunication systems typically have Rayleigh distributed amplitude characteristics. However measurement result of Ultra Wideband (UWB) Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) system which is proposed as one of candidate standard in IEEE 802. 15. 3a for Wireless Personal Area Network (WPAN) shows that it has independent log normal fading in each cluster as well as in each ray within the cluster. Based on this clustering phenomenon observed, MB-OFDM channel model derived from Saleh-Valenzuela model with a couple of slight modifications. In this paper, channel remodeling for RF frequency hopping in MB-OFDM system is achieved, and performances of MB-OFDM system for each channel mode and data rate are verified using modified channel model.

  • PDF

Intrusion Detection Scheme Using Traffic Prediction for Wireless Industrial Networks

  • Wei, Min;Kim, Kee-Cheon
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.310-318
    • /
    • 2012
  • Detecting intrusion attacks accurately and rapidly in wireless networks is one of the most challenging security problems. Intrusion attacks of various types can be detected by the change in traffic flow that they induce. Wireless industrial networks based on the wireless networks for industrial automation-process automation (WIA-PA) standard use a superframe to schedule network communications. We propose an intrusion detection system for WIA-PA networks. After modeling and analyzing traffic flow data by time-sequence techniques, we propose a data traffic prediction model based on autoregressive moving average (ARMA) using the time series data. The model can quickly and precisely predict network traffic. We initialized the model with data traffic measurements taken by a 16-channel analyzer. Test results show that our scheme can effectively detect intrusion attacks, improve the overall network performance, and prolong the network lifetime.

Simulation Performance of WAVE System with Combined DD-CE and LMMSE Smoothing Scheme in Small-Scale Fading Models

  • Seo, Jeong-Wook;Kwak, Jae-Min;Kim, Dong-Ku
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.281-288
    • /
    • 2010
  • This paper investigates the performance of IEEE 802.11p wireless access in vehicular environments (WAVE) system in small-scale fading models reported by Georgia Institute of Technology (Georgia Tech). We redesign the small-scale fading models to be applied to the computer simulation and develop the IEEE 802.11p WAVE physical layer simulator to provide the bit error rate and packet error rate performances. Moreover, a new channel estimator using decision directed channel estimation and linear minimum mean square error smoothing is proposed in order to improve the performance of the conventional least square channel estimator using two identical long training symbols. The simulation results are satisfactorily coincident with the scenarios of Georgia Tech report, and the proposed channel estimator significantly outperforms the conventional channel estimator.

A Study of VLC Channel Modeling using user Location Environment (사용자 위치 기반의 VLC 채널 모델 도출에 관한 연구)

  • Lee, Jung-Hoon;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1240-1245
    • /
    • 2011
  • In this paper, channel modeling and analysis of wireless visible light communication(VLC) were studied in indoor circumstance. Photons emitted from LED straightly moved and navigated within indoor, after that a part of photons reached on PD via LOS(Line Of Sight) or NLOS(None Line Of Sight). These received signals had characteristics of delay profile and attenuation, which was multiple-path fading. In this paper, computer simulation of VLC channel was executed under the condition that two LEDs were used for transmitter and three PDs were located at different positions of the 20*8*2.3m sized indoor. BER performance simulation was excuted based on the characteristics of each VLC channel.

VIDEO TRAFFIC MODELING BASED ON $GEO^Y/G/{\infty}$ INPUT PROCESSES

  • Kang, Sang-Hyuk;Kim, Ba-Ra
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.171-190
    • /
    • 2008
  • With growing applications of wireless video streaming, an efficient video traffic model featuring modern high-compression techniques is more desirable than ever, because the wireless channel bandwidths are ever limited and time-varying. We propose a modeling and analysis method for video traffic by a class of stochastic processes, which we call '$GEO^Y/G/{\infty}$ input processes'. We model video traffic by $GEO^Y/G/{\infty}$ input process with gamma-distributed batch sizes Y and Weibull-like autocorrelation function. Using four real-encoded, full-length video traces including action movies, a drama, and an animation, we evaluate our modeling performance against existing model, transformed-M/G/${\infty}$ input process, which is one of most recently proposed video modeling methods in the literature. Our proposed $GEO^Y/G/{\infty}$ model is observed to consistently provide conservative performance predictions, in terms of packet loss ratio, within acceptable error at various traffic loads of interest in practical multimedia streaming systems, while the existing transformed-M/G/${\infty}$ fails. For real-time implementation of our model, we analyze G/D/1/K queueing systems with $GEO^Y/G/{\infty}$ input process to upper estimate the packet loss probabilities.

  • PDF