• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.029 seconds

A Theoretical Framework for Closeness Centralization Measurements in a Workflow-Supported Organization

  • Kim, Min-Joon;Ahn, Hyun;Park, Min-Jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3611-3634
    • /
    • 2015
  • In this paper, we build a theoretical framework for quantitatively measuring and graphically representing the degrees of closeness centralization among performers assigned to enact a workflow procedure. The degree of closeness centralization of a workflow-performer reflects how near the performer is to the other performers in enacting a corresponding workflow model designed for workflow-supported organizational operations. The proposed framework comprises three procedural phases and four functional transformations, such as discovery, analysis, and quantitation phases, which carry out ICN-to-WsoN, WsoN-to-SocioMatrix, SocioMatrix-to-DistanceMatrix, and DistanceMatrix-to-CCV transformations. We develop a series of algorithmic formalisms for the procedural phases and their transformative functionalities, and verify the proposed framework through an operational example. Finally, we expatiate on the functional expansion of the closeness centralization formulas so as for the theoretical framework to handle a group of workflow procedures (or a workflow package) with organization-wide workflow-performers.

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

QSO Selections Using Time Variability and Machine Learning

  • Kim, Dae-Won;Protopapas, Pavlos;Byun, Yong-Ik;Alcock, Charles;Khardon, Roni
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.64-64
    • /
    • 2011
  • We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million lightcurves, and found 1620 QSO candidates. During the selection, none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  • PDF

Stable adaptive observer for state Identification in control system (안정한 적응관측기법에 의한 제어계의 상태추정)

  • Bang, S.Y.;Chun, S.Y.;Yim, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.898-901
    • /
    • 1988
  • Up to now, using adaptive control method, Identification deals with system whose entire state variables and prameters are accessible for measurement. In practical situations, all the state variables cannot be measured and it is impossible to directly apply since the parameters of the system are unknown. Therefore, in this paper, using only input-output data, such a model of the system is not available since the parameters of the system are unknown. this leads to the concept of an adptive observer in which both the parameters and the state variable of the system are identified simultaniously. Lyapunov's direct method and Kalman-Yakubovich (K-Y) lemma are employed to ensure the stability of this schemes. The feature is that the signal and adaptive gain which is generated from filter is imposed upon feedback vector and then state variables and the unknown parameters can be identified. To show the usefulness of the proposed schemes, computer simulation result of unknown second-order system shows the effectiveness of the proposed schems.

  • PDF

Current Control of a 3$\phi$ PWM Converter Based on a New Control Model with a Delay and SVPWM effects (시지연과 SVPWM 영향이 고려된 새로운 제어 모델에 의한 3상 전압원 PWM 컨버터의 전류 제어)

  • Min, Dong-Ki;Ahn, Sung-Chan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2018-2020
    • /
    • 1998
  • In design of a digital current controller for a 3$\phi$ voltage-source (VS) PWM converter, its conventional model, i.e., stationary or synchronous reference frame model, is used in obtaining its discretized version. It introduces, however, inherent errors since the following practical problems are not taken into consideration: the characteristics of the space vector-based pulsewidth modulation (SVPWM) and the time delays in the process of sampling and computation. In this paper, the new hybrid reference frame model of the 3$\phi$ VS PWM converter is proposed considering these problems. In addition, the direct digital current controller based on this model is designed without any prediction or extrapolation algorithm to compensate the time delay. So the control algorithm is made very simple. The validity of the proposed algorithm is proved by the computer simulation results.

  • PDF

Implement of Realtime Character Recognition System for Numeric Region of Sportscast (스포츠 중계 화면 내 숫자영역에 대한 실시간 문자인식 시스템 구현)

  • 성시훈;전우성
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.5-8
    • /
    • 2001
  • We propose a realtime numeric caption recognition algorithm that automatically recognizes the numeric caption generated by computer graphics (CG) and displays the modified caption using the recognized resource only when a valuable numeric caption appears in the aimed specific region of the live sportscast scene produced by other broadcasting stations. We extract the mesh feature from the enhanced binary image as a feature vector after acquiring the sports broadcast scenes using a frame grabber in realtime and then recover the valuable resource from just a numeric image by perceiving the character using the neural network. Finally, the result is verified by the knowledge-based rule set designed for more stable and reliable output and is displayed on a screen as the converted CC caption serving our purpose. At present, we have actually provided the realtime automatic mile-to-kilometer caption conversion system taking up our algorithm f3r the regular Major League Baseball (MLB) program being broadcasted live throughout Korea over our nationwide network. This caption conversion system is able to automatically convert the caption in mile universally used in the United States into that in kilometer in realtime, which is familiar to almost Koreans, and makes us get a favorable criticism from the TV audience.

  • PDF

The Modified LVQ method for Performance Improvement of Pattern Classification (패턴 분류 성능을 개선하기 위한 수정된 LVQ 방식)

  • Eom Ki-Hwan;Jung Kyung-Kwon;Chung Sung-Boo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.33-39
    • /
    • 2006
  • This paper presents the modified LVQ method for performance improvement of pattern classification. The proposed method uses the skewness of probability distribution between the input vectors and the reference vectors. During training, the reference vectors are closest to the input vectors using the probabilistic distribution of the input vectors, and they are positioned to approximate the decision surfaces of the theoretical Bayes classifier. In order to verify the effectiveness of the proposed method, we performed experiments on the Gaussian distribution data set, and the Fisher's IRIS data set. The experimental results show that the proposed method considerably improves on the performance of the LVQ1, LVQ2, and GLVQ.

A Study on the High Performance PWM Technique for a Propulsion System of Railway (철도차량용 추진제어장치의 고능률 PWM기법에 관한 연구)

  • Min, Byoung-Gwon;Seo, Kwang-Duk;Won, Chung-Yuen
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.186-192
    • /
    • 1998
  • This paper presents a high performance low switching PWM technique or the propulsion system of railway such as subway and high speed train. In order to achieve the continuous voltage control to six-step and s low harmonics with low switching frequency under 500Hz, the synchronous technique is combined with a space vector overmodulation and implemented by using DSP. Improved performance and a validation of proposed method are showed by the digital simulation and the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons railway cars.

  • PDF