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Abstract 
 

In this paper, we build a theoretical framework for quantitatively measuring and 

graphically representing the degrees of closeness centralization among performers assigned to 

enact a workflow procedure. The degree of closeness centralization of a workflow-performer 

reflects how near the performer is to the other performers in enacting a corresponding 

workflow model designed for workflow-supported organizational operations. The proposed 

framework comprises three procedural phases and four functional transformations, such as 

discovery, analysis, and quantitation phases, which carry out ICN-to-WsoN, 

WsoN-to-SocioMatrix, SocioMatrix-to-DistanceMatrix, and DistanceMatrix-to-CCV 

transformations. We develop a series of algorithmic formalisms for the procedural phases and 

their transformative functionalities, and verify the proposed framework through an operational 

example. Finally, we expatiate on the functional expansion of the closeness centralization 

formulas so as for the theoretical framework to handle a group of workflow procedures (or a 

workflow package) with organization-wide workflow-performers. 
 

 

Keywords: workflow-supported org-social network (WsoN), information control net (ICN), 

closeness centralization measures/vector (CCV), workflow model, organizational knowledge 

management, workflow intelligence 
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1. Introduction 

The workflow model is concretized through multiple-level abstraction [1], such as view, 

conceptual, and physical levels of abstraction, to provide a series of theoretical bases for 

designing and implementing a workflow management system. The typical view-level abstract 

is the information control net [2], which is a formal way of specifying a workflow procedure 

particularly focusing on the control flow aspect of activities. The conceptual-level abstract is a 

various formation of transformations according to the essential aspects of the workflow 

procedure like performer-dependency, control-dependency, role-dependency, and 

data-dependency aspects. The physical-level abstract of a workflow procedure represents the 

architectural distribution of its activities in realizing a workflow management system. The 

scope of this paper conceives a series of theoretical formalisms related with conceptual-level 

abstract of the workflow model, particularly focusing on the performer-dependency aspect. 

Recently, workflow modeling techniques [1], organizational intelligence techniques [3, 4], 

and social network analysis techniques [5] are converging on “workflow-supported people,” 

which starts from the strong belief that social relationships and collaborative behaviors among 

people, who are involved in enacting a workflow procedure, affect the overall performance as 

well as the degrees of working productivity in performing the real business operations under 

the control of workflow-supported organizations [6]. As a consequence, research and 

development issues [7-12] of converging the concept of social network and its analysis 

methods upon workflow-supported people (so-called workflow-performers) have been 

emerging in the literature. 

Our key contribution in this paper is to propose a theoretical framework and its related 

formalisms for measuring how much close to other workflow-performers by using the social 

network analysis techniques, particularly the closeness centrality analysis formulas [5]. The 

centralization of workflow-performers is a typical social network analysis technique 

identifying the important or prominent performers within a workflow procedure by 

summarizing the structural relationships among all the performers. The most widely used 

centralization measures are degree
1
, closeness

2
, betweenness

3
, and eigenvalue. These 

measures vary in their applicability to non-directed and directed relations, and differ at the 

individual performer and the group performers of the partial or complete workflow procedure 

levels. In this paper, we confine the scope of the measurements to the closeness centralization 

measurement for individual and group workflow-performers within a workflow procedure. 

The closeness centralization measurement reflects how near a workflow-performer is to the 

other workflow-performers in enacting a workflow procedure, and through which we can 

numerically measure and calculate the degree of work-intimacy and collaboration of each 

workflow performer, which implies how quickly a workflow-performer can interact with 

others by directly communicating or through very few intermediaries. The eventual goal of the 

framework is to extensively apply the degree of work-intimacy and collaboration to all 

performers involved in a workflow model, a workflow package (a group of inter-relevant 

workflow models), and a group of workflow packages on a workflow-supported organization. 

                                                           
1 The degree centrality measures the extent to which a workflow-performer connects to all others. 
2 The closeness centrality measures how near a workflow-performer is to the others. 
3 The betweenness centrality measures how other workflow-performers control or mediate the relations between 

dyads that are not directly connected. 
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In terms of the composition of the paper, we describe the conceptual backgrounds of this 

research, in first. In the consecutive section, we expatiate the detailed formalisms of the 

theoretical framework consisting of discovery phase, analysis phase, visualization phase, in 

company with an operational example, and finalize the practical implications of the proposed 

closeness centralization measurements in a workflow-supported organization. Finally, we 

describe the literature survey result related to the topics of discovering, analyzing, and 

quantitating the workflow-supported closeness centralization measurements among 

performers. 

2. Conceptual Backgrounds and Contributions 

This section starts from shortly introducing the basic concept of information control net (ICN) 

[2] as a formal methodology for describing workflow models. In the information control net, a 

workflow model is described by six essential entity types and their associative relationships. 

Out of the essential entity types, the human-related one is the performer entity type 

representing a group of workflow-performers assigned to enact the corresponding workflow 

model. Next, we elucidate the conceptual background and rationale for measuring closeness 

centralizations among those workflow-performers in an ICN-based workflow model. 

2.1 Information Control Net 

The information control net [2] defines a workflow model formally and graphically by 

capturing the essential properties of workflow procedures such as activities and their temporal 

precedence, invoked applications, roles, performers, and input/output repositories. In this 

section, we simply introduce the information control net through the formal notations of the 

workflow’s essential entity types. The following [Definition 1] is a formal definition of 

information control net and its functional components returning the various associative 

relationships of workflow model, such as activity precedence (control flow), activity-role 

association, activity-relevant data association (data flow), activity-invoked application 

association, activity-transition condition association, and role-performer association 

information. 

 

[Definition 1] Information Control Net (ICN) for formally defining workflow model. A 

basic ICN is 8-tuple Γ = (δ, ρ, λ, ε, π, κ, I, O) over a set of A activities (including a set of  

group activities), a set of E ⊆ (A x A) edges (pairs of activities), a set T of transition 

conditions, a set R of repositories, a set of G of invoked application programs, a set of P of 

roles, and a set of C of actors (including a set of actor groups), where ℘( ) represents a power 

set: 

 

– I is a finite set of initial input repositories, assumed to be loaded with information by 

some external process before execution of the ICN; 

– O is a finite set of final output repositories, perhaps containing information used by 

some external process after execution of the ICN; 

– δ = δi ∪ δo  

where, δo: A → ℘(A) is a multi-valued mapping function from an activity to its sets 

of (immediate) successors, and δi: A → ℘(A) is a multi-valued mapping function 

from an activity to its sets of (immediate) predecessors; 

– ρ = ρi ∪ ρo  
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where ρo: A → ℘(R) is a single-valued mapping function from an activity to its set 

of output repositories, and ρi: A → ℘(R) is a single-valued mapping function from 

an activity to its set of input repositories; 

– λ = λa ∪ λg 

where λg: A → G is a single-valued mapping function from an activity to its 

invoked application program, and  λa: G → ℘(A) is a single-valued mapping 

function from an invoked application program to its set of associated activities; 

– ε = εa ∪ εp 

where εp: A → ℘(P) is a single-valued mapping function from an activity to a role, 

and εa: P → ℘(A) is a single-valued mapping function from a role to its set of 

associated activities; 

– π = πp ∪ πc 

where  πc: P → ℘(C) is a single-valued mapping function from a role to its set of 

associated performers, and  πp: C → ℘(P) is a single-valued mapping function 

from a performer to its set of associated roles; 

– κ = κi ∪ κo 

where κi: E → ℘(T) is a single-valued mapping function from an edge to a set of 

control-transition conditions; and κo: T → ℘(E) is a single-valued mapping 

function from a control-transition condition to a set of edges. 
 

2.2 Key Contributions: Closeness Centralization Measurement and 
Visualization in a Workflow-Supported Organization 

Like the information control net, almost all the workflow models commonly employ the five 

essential entity types, such as activity, role, performer, repository and application entity-types, 

to represent organizational works and their procedural collaborations. Through the associative 

relationships between performer entity type and others, we can obtain human-centered 

organizational knowledge such as behavioral, social, informational, collaborative, and 

historical knowledge. Therefore, we can interpret the workflow management systems as 

“people systems” that must be designed, deployed, and understood within their social and 

organizational contexts. The people systems ought to be able to support any formations of 

collaborative activities among people, which eventually build up the human-centered 

collaborative knowledge as the most influential and meaningful organizational knowledge. 

The authors’ research group has sought the most reasonable metric units for evaluating the 

degrees of collaborations among people in the workflow-supported people system, and we 

have found one of them out at last, which is Centrality
4
 [5] stemmed from the social network 

literature. The most widely used centrality measures are degree, closeness, betweenness, and 

eigenvalue. In this paper, we actively adopt the concept of closeness centrality in quantifying 

the degree of collaboration among people allotted into a workflow model. 

The human-centered collaborative knowledge in a workflow-supported organization can 

be discovered by exploring the associative relationships between performers and activities 

from the corresponding workflow models and/or their enactment events histories. As shown in 

                                                           
4 Centrality, where a prominent actor has high involvement in many relations, regardless of whether sending and 

receiving ties, in a social network. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 9, September 2015                                3615 

Fig. 1, a specific workflow model is defined by a group of activities and their temporal 

enactment sequences, and it is associated with a group of performers taking charge of enacting 

its activities. In the information control net, the associations between activities and performers 

are defined through a group of roles. The activity-performer association is not a direct 

association but a transitive association, and so it is formed through activity-role associations 

and role-performer associations. Note that Role is a named designator for one or more 

participants which conveniently acts as the basis for partitioning of work skills, access controls, 

execution controls, and authority / responsibility, and Performer is a person that can fulfill 

roles to execute, to be responsible for, or to be associated with activities of an information 

control net. The activity-performer associations can be transitively obtained from the 

activity-role associations and the role-performer associations. We know that the 

activity-performer association is divided by two directed associations—activity-to-performer 

association and performer-to-activity association—and both are many-to-many relationships, 

which imply that not only more than one performers can participate in enacting an activity, but 

also a performer is able to participate in enacting one or more activities. 

 

Fig. 1. Performers’ Involvement and Closenesses on a Specific Workflow Model 

We are particularly interested in adopting the concept of closeness centrality to measure the 

degree of work-intimacy and collaboration among performers in enacting a corresponding 

workflow model. The concept was originally developed to reflect how near a node is to the 

other nodes in a social network, and so the semantic significance of closeness and distance 

refer to how quickly an actor can interact with others. In the domain of workflow-supported 

organizational knowledge, the performer’s closeness centralization concept can be interpreted 

as the extent to how much close a specific performer is to the others on a flow of works. Fig. 1 

shows the conceptual significance of the performer’s closeness centralization. The 

activity-performer associations eventually form a flow of works among the 

workflow-performers, which can be represented by the actor-based workflow model [1] or the 

workflow-supported social network model [13], both of which were proposed by the authors’ 

research group. Then, on a workflow-supported social network, it might be quite in the nature 

of things to raise the questions as followings: 

 Who is the most important or prominent performer(s) interacting the most tightly with 

others in enacting a specific workflow procedure? 
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 How near is the most prominent performer to others in a workflow-supported org-social 

network? 

 What is the average distance (or closeness) among performers in a workflow-supported 

org-social network? In other words, how quickly can a performer interact with others in 

enacting the associated workflow procedure by communicating directly or through very 

few intermediaries? 

 

Conclusively, the answers to the questions ought to be able to convey a very valuable and 

meaningful insight to the workflow-supported organization. The primary rationale of the 

closeness centralization concept is on the questions and answers section. A theoretical 

framework to be expatiated in the next consecutive sections of this paper covers from 

discovering a shape of workflow-performers’ collaborative relationships through a 

workflow-supported social network to analyzing their closeness centralization measures by 

mathematically extending some of the well-known closeness centrality formulas [5] in the 

social network analysis literature. Ultimately, the theoretical framework can be implemented 

as an organizational intelligent system that is able to quantitatively answer to the questions 

through the closeness centralization concept and measurement—closeness-centrality—at both 

individual and group levels of the workflow-supported organization. 

3. The Theoretical Framework 

In this section, we expatiate on a theoretical framework for measuring the closeness 

centralizations that enable us to quantify the levels of work-intimacy and collaboration among 

workflow-performers. The framework is a kind of procedural framework that comprises three 

stepwise phases with five functional transformations, as illustrated in Fig. 2. The phases are 

discovery, analysis, and visualization phases, and the functional transformations are 
ICN-to-WsoN, WsoN-to-SocioMatrix, SocioMatrix-to-DistanceMatrix, DistanceMatrix-to-CCV, 

and CCV-to-ccGraphML transformations. 

 Discovery Phase 

– ICN-to-WsoN Transformation: Building a workflow-supported org-social network 

model from an information control net. 

– WsoN-to-SocioMatrix Transformation: Constructing four types of SocioMatrices 

from a workflow-supported org-social network model. 

 Analysis Phase 

– SocioMatrix-to-DistanceMatrix Transformation: Creating a DistanceMatrix from a 

SocioMatrix by applying the geodesic (shortest) distance formulas. 

 Quantitation Phase 

– DistanceMatrix-to-CCV Transformation: Building up a closeness centrality vector on 

the DistanceMatrix by applying the closeness centrality formulas. 

 

In the next consecutive subsections, we describe the details of these phases and functional 

transformations of the theoretical framework through a series of formulas and algorithms, and 

their operational examples. 
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Fig. 2. The Theoretical Framework for Workflow-Performers’ Closeness Centralities 

 

3.1 The Discovery Phase 

We start from introducing the basic concept and definition of a performer-flow graph that 

enables us to efficiently calculate the closeness centralization measurements. The 

performer-flow graph is discovered by analyzing workflow-performers’ associative 

relationships with activities in a workflow procedure. For the sake of the closeness 

centralization measurements, the performer-flow graph needs to be represented by a 

theoretical notation as well as a mathematical notation. This graph’s formal representation is 

defined by the workflow-supported org-social network model [9,10,13], which is abbreviated 

as WsoN, and its mathematical representation is a form of matrix, which is called SocioMatrix 

[5]. In consequence, the discovery phase of the performer-flow graph from an information 

control net consists of two of these functional transformations, such as the ICN-to-WsoN 

Transformation and the WsoN-to-SocioMatrix Transformation. 

 

3.1.1 The ICN-to-WsoN Transformation 

The purpose of this transformation is to functionally generate a performer-flow graph from an 

information control net. The performer-flow graph is formed by the activity-performer 

associations that can be transitively obtained from the activity-role associations and the 

role-performer associations in the information control net, as followings: 

 The activity-role association: for any activity (α), {α | εp(α) = {ηi } ∧ ηi ∈ P }, where P is the 

set of roles, {η1, η2, ..., ηn}, means that the activity α is associated with a single role out of 

P; also, for any role(η), {η | εa(η) = {αs, ..., αm} ^ {αs, ..., αm} ⊂ A}, where A is the set of 

activities, {α1, α2, ..., αm}, means that the role η is associated with one or more activities 

out of A. Summarily, activity-to-role association is one-to-one relationship, whereas 

role-to-activity association is one-to-many relationship. 

 The role-performer association: for any role(η), {η | πc(η) = {øs, ..., øk } ^ {øs, ..., øk} ⊂ C}, 
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where C is the set of performers, {ø1, ø2, ..., øn}, means that the role η is associated with 

one or more performers out of C; also, for any performer(ø), {ø | πp(ø) = {ηs, ..., ηm} ^ 

{ηs, ..., ηm} ⊂ P}, where P is the set of roles, means that the performer ø is associated with 

one or more roles out of P. Summarily, both role-to-performer association and 

performer-to-role association are many-to-many relationships. 

 Based upon these two types of associations, we are able to transitively obtain the 

activity-to-performer associations from an information control net, and we know that both 

the activity-to-performer association and performer-to-activity association are 

many-to-many relationships. Conclusively speaking, not only more than one performers 

can participate in enacting an activity, but also a performer is able to participate in 

enacting one or more activities. 

 

[Definition 2] Workflow-Supported Organizational Social (Org-Social) Network Model. 

The workflow-supported org-social network model is formally defined as Λ = (σ, ψ, S, E), 

over a set C of performers, and a set A of activities, where 

 S is a finite set of coordinators or coordinator-groups connected from some external 

workflow-supported org-social network models; 

 E is a finite set of coordinators or coordinator-groups connected to some external 

workflow-supported org-social network models; 

 σ = σi ∪ σo /* Control-Precedence Relationships */ 

where, σo: C → ℘(C) is a multi-valued function mapping a performer to its sets of 

(immediate) candidate-successors, and σi: C → ℘(C) is a multi-valued function 

mapping a performer to its sets of (immediate) candidate-predecessors; 

 ψ = ψi ∪ ψo /* Activity-Acquisition Relationships */ 

where, ψi: C → ℘(C) is a multi-valued function returning a bag
5
 of previously 

worked activities, (K ⊆ A), on directed arcs, (σi(ø), ø), ø ∈ C, from σi(ø) to ø; and ψo: 

C → ℘(C) is a multi-valued function returning a set of acquisition activities, (K ⊆ 

A), on directed arcs, (ø, σo(ø)), ø ∈ C from ø to σo(ø); 

 

The performer-flow graph is formally and graphically represented by the 

workflow-supported org-social network model, as given in the formal definition, [Definition 

2]. The behaviors of the model are revealed through incoming and outgoing directed arcs 

labeled as activities between a pair of associated performers. The directed arcs manifest two 

kinds of behaviors—control-precedence and activity-acquisition—between the associated 

performers, through which we are able to obtain the work-precedence (candidate-predecessor 

knowledge/candidate-successor knowledge) knowledge and the activity-acquisition 

knowledge among performers in a workflow procedure. In terms of defining the performer’s 

predecessors and successors, we would use the prepositional word, “candidate,” because a 

role-performer association is a one-to-many mapping relationship and the performer selecting 

and binding mechanism has to choose one out of the assigned performers of the role during a 

corresponding workflow instance’s execution time. 

In principle, the workflow-supported org-social network model is graphically represented 

by a directed graph characterized by some combinations of multiple-incoming arcs, 

                                                           
5 The bag theory is same to the set theory except allowing duplicated members. 
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multiple-outgoing arcs, cyclic, self-transitive, and multiple-activity associations on arcs, and 

which needs to be transformed to an undirected graph. For measuring the closeness centralities 

among the associated performers, the performer-flow graph, which is a directed graph, needs 

to be transformed into an undirected graph, too. 

 

ICN-to-WsoN Transformation Algorithm: 

Input An Information Control Net, Γ = (δ, ρ, λ, ε, π, κ, I, O); 

Output A Workflow-Supported Org-Social Network Model, Λ = (σ, ψ, S, E);  

Begin Procedure 

For ( ∀α ∈ A ) Do  

      Begin 

/* σ = σi ∪ σo */ 

              Add all members of πc(εp(α)) To σi(each member of πc(εp(δo(α))));  

           Add all members of πc(εp(δo(α))) To σo(each member of πc(εp(α))); 

/* ψ = ψi ∪ ψo */ 

        Add all pairs of (α, ø), ∀ø∈πc(ε(α)) To ψi(each of πc(εp(δo (α)))); 

        Add all pairs of (α, ø), ∀ø ∈ πc(εp(δo(α))) To ψo(each of πc(εp(α))); 

    End 

End Procedure 

 

The above algorithm shows the ICN-to-WsoN transformation procedure. Again, it is 

important to emphasize that the workflow-supported org-social network model is not modeled 

or designed but automatically transformed from an information control net. So, the authors’ 

research group devised the formal transformation methodology [1,2,9] that algorithmically 

analyzes the human-centered associations of an information control net. As described at the 

above algorithm, it needs, as input, sets of the human-centered associations—εp (activity-role 

associations) and πc (role-performer associations)—based on δo(control-flow collaborations). 

As output, it generates the necessary sets—σ = σi ∪ σo (performer-precedence perspective) and 

ψ = ψi ∪ ψo (activity-acquisition perspective)—of the workflow-supported org-social network 

model by transitively applying the activity-role associations and the role-performer 

associations. Through these generated sets, we are able to build a performer-flow graph for the 

closeness centralization measurements. 

As an operational example, we apply the algorithm to the hiring information control net 

introduced in [2]. The transformed result of the performer-flow model is graphically 

represented in the right-hand side of Fig. 3. Due to the page limitation, we won’t provide the 

details of the formal representations of the input model and the output model. In terms of the 

performer’s closeness centralization measurements, we know that there are seventeen 

performers on the performer-flow graph, and the geodesic (shortest) distances between the 

performer node, ø1 and others, ø2, ø3, ø4, ø5, ø6, ø7, ø8, ø9, ø10, ø11, ø12, ø13, ø14, ø15, ø16, ø17, are 1, 

1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, and 2, respectively. These geodesic distances come out of 

the directed performer-flow graph. However, we also know that they ought to be recalculated 

on the undirected performer-flow graph. 
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Fig. 3. The Hiring Information Control Net [15] and Its Performer-Flow Graph (WsoN) 

 

Binary Directed SocioMatrix Transformation Algorithm: 

Input A workflow-supported org-social network, Λ = (σ, ψ, S, E); 

Output Two symmetric binary SocioMatrices, Z
b

in[N, N] and Z
b

out[N, N],  

    where N is the number elements in the set of C actors. 

Begin Procedure 

Initialize all entries of Z
b
in[N, N] To Zeroes;  

Initialize all entries of Z
b
out[N, N] To Zeroes;  

For ( ∀ø ∈ C ) Do 

    Begin 

/* The Incoming Relations of Z
b

in[N, N] */ 

    Set One To entries of Z
b

in[ø, each member of σi(ø)]; 

/* The Outgoing Relations of Z
b

out[N, N] */ 

    Set One To entries of Z
b

out[ø, each member of σo(ø)]; 

    End 

End Procedure 

 

3.1.2 The WsoN-to-SocioMatrix Transformation 

The performer-flow graph is formally represented by the workflow-supported org-social 

network model, and its mathematical representation is expressed in terms of SocioMatrix [5] 
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introduced in the social network literature. In order to mathematically measure the closeness 

centralizations, the performer-flow graph needs to be transformed in SocioMatrix by a 

WsoN-to-SocioMatrix transformation algorithm. SocioMatrix can be refined on two groups of 

subtle matrices—binary directed/undirected SocioMatrix and valued directed/undirected 

SocioMatrix. We use to construct a sociogram [5] that is a two-dimensional diagram for 

depicting the precedence relationships among performers. The term, directed, indicates the 

directed-precedence relationships or ties from one at the tail to another at the arrowhead, 

whereas the term, undirected (no arrowheads), implies mutual-precedence relationships. 

Likewise, when a directed/undirected performer-flow graph is transformed to SocioMatrix, 

the term, binary, implies the most basic measurement, presence or absence of a tie, which is a 

dichotomy indicated by the binary value of 1 or 0, respectively; also SocioMatrix may include 

valued cells, reflecting the intensity of relationships or ties, such as frequency of 

performer-flows, tie strength, or magnitude of associations, and therefore the cell entries in 

SocioMatrix can vary from 0 to the maximum level of dyadic interactions. 

The authors’ research group had devised a series of algorithms that are able to transform a 

workflow-supported org-social network into four types of SocioMatrix. Without any further 

explanation, we simply introduce these WsoN-to-SocioMatrix transformation algorithms as 

followings, each of which produces binary/directed SocioMatrix (Z
b

in[N, N], Z
b
out[N, N]), 

binary/undirected SocioMatrix (Z
b
[N,N]), valued/directed SocioMatrix (Z

v
in[N,N], 

Z
v
out[N,N]), and valued/undirected SocioMatrix (Z

v
[N,N]), where N is the number of 

performers in a workflow-supported org-social network. 

 

Binary unDirected SocioMatrix Transformation Algorithm: 

Input A workflow-supported org-social network, Λ = (σ, ψ, S, E); 

Output A symmetric binary SocioMatrix, Z
b
[N, N],  

where N is the number elements in the set of C actors(Performers). 

Begin Procedure 

Initialize all entries of Z
b
[N, N] To Zeroes ;  

For ( ∀ø ∈ C ) Do 

    Begin 

        /* Set the Incoming Relations to Z
b
[N, N] */ 

Set One To entries of Z
b
[ø, each member of σi(ø)]; 

     /* Set the Outgoing Relations to Z
b
[N, N] */ 

Set One To entries of Z
b
[ø, each member of σo(ø)]; 

    End 

End Procedure 

 

In order to verify the devised WsoN-to-SocioMatrix transformation algorithms, we directly 

apply the binary/undirected SocioMatrix transformation algorithm to the formal 

representation of the workflow-supported org-social network transformed from the hiring 

information control net of Fig. 3. Table 1 shows the binary/undirected SocioMatrix, Z
b
[N,N], 

successfully transformed by the algorithm. Note that it is possible to generate a 

valued/undirected SocioMatrix by adding two of the symmetric valued SocioMatrices, 

Z
v
in[N,N] and Z

v
out[N,N]; in this case, then the values of the entries might be indicating the 

frequencies of performer-precedence relationships (or activity-acquisition relationships) 

between the paired performers. 
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Valued Directed SocioMatrix Transformation Algorithm: 

Input A workflow-supported org-social network, Λ = (σ, ψ, S, E); 

Output Two symmetric valued SocioMatrices, Z
v
in[N, N] and Z

v
out[N, N],  

  where N is the number elements in the set of C actors (Performers). 

Begin Procedure 

Initialize all entries of Z
v
in[N, N] To Zeroes;  

Initialize all entries of Z
v
out[N, N] To Zeroes;  

For ( ∀ø ∈ C ) Do 

    Begin 

        /* Add the Incoming Relations to Zvin[N, N] */ 

Add One To entries of Z
v
in[ø, each member of σi(ø)]; 

        /* Add the Outgoing Relations to Zvout[N, N] */ 

Add One To entries of Z
v
out[ø, each member of σo(ø)]; 

    End 

End Procedure 

 

Valued unDirected SocioMatrix Transformation Algorithm: 

Input A workflow-supported org-social network, Λ = (σ, ψ, S, E); 

Output A symmetric valued SocioMatrix, Z
v
[N, N],  

where N is the number elements in the set of C actors (Performers).  

Begin Procedure 

Initialize all entries of Z
v
[N, N] To Zeroes;  

For ( ∀ø ∈ C ) Do 

     Begin 

        /* Add the Incoming Relations to Z
v
[N, N] */ 

Add One To entries of Z
v
[ø, each member of σi(ø)]; 

        /* Add the Outgoing Relations to Z
v
[N, N] */ 

Add One To entries of Z
v
[ø, each member of σo(ø)]; 

       End 

End Procedure 

 

3.2 The Analysis Phase 

As stated in the conceptual background section, we are interested in quantitatively measuring 

the degree of closeness centralization by borrowing the well-known formulas [5] in the social 

network analysis literature. The analysis phase carries out the functional transformation, the 

SocioMatrix-to-DistanceMatrix transformation to calculate the geodesic distances among 

performers. 

 

3.2.1 The SocioMatrix-to-DistanceMatrix Transformation 

Based upon the SocioMatrices, Z
b
in[N,N], Z

b
out[N,N], Z

b
[N,N], Z

v
in[N,N], Z

v
out[N,N], and 

Z
v
[N,N], we are able to calculate the closeness centrality measures by applying the formula 

given in (1) [5]. 
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 The Index of Individual Closeness Centrality  

       
 

         
 
   

                                                     

 

Formula (1) is for measuring an individual performer’s closeness centrality. The term, d(øi, 

øj), in the denominator is a function of geodesic distance that is the length of the shortest path 

out of all reachable paths from øi to øj . The conceptual implication of the individual closeness 

centrality refers to how quickly a performer can interact with others by communicating 

directly or through very few intermediaries. Conclusively, from one of the SocioMatrices with 

N performers, the index of individual closeness centrality is computed as the inverse of the 

sum of the geodesic distances between performer øi and the (N − 1) other performers. The 

SocioMatrix-to-DistanceMatrix transformation is charged with the function of geodesic 

distances, d(øi, øj), for all workflow-performers by iteratively applying the function for N 

times as many workflow-performers.  

The following algorithm is the pseudo-coded function carrying out the 

SocioMatrix-to-DistanceMatrix transformation through the procedure name of 

geoDistanceMeasurement( ) with a recursive subroutine, geoDistance( ), which returns a 

geodesic distance of the performer dyad input. We assume that SocioMatrix as input of the 

algorithm is a Binary/unDirected SocioMatrix, Z
b
[N, N]. 

 

SocioMatrix-to-DistanceMatrix Transformation Algorithm: 

Global A Set of Individual Performers, C; 

Global A Set of Traversed Individuals, T;  

Global A Set of Direct-tied Individuals, D;  

Global A Set of Distance Values, depth[N]; 

 

Procedure Name: geoDistanceMeasurement( ) 

Input A Binary/unDirected SocioMatrix, Z
b
[N, N]; 

Output A Geodesic (Shortest) Distance Matrix, DistanceMatrix[N, N];  

Begin Procedure 

For ( ∀øi ∈ C ) 

For ( ∀øj ∈ C, øi  øj ) 

Switch ( Z[øi, øj] ) 

Case 1: /* direct tie between øi and øj. */ 

DistanceMatrix[øi, øj ] ← 1; 

break; 

Case 0: /* no direct tie between øi and øj. */ 

Initialize (depth(ø1) . . . depth(øn)) ← 1;  

T ← øi; 

DistanceMatrix[øi, øj ] ← geoDistance(øi,øj); 

break;  

Rof 

Rof 

Return DistanceMatrix[N, N];  

End Procedure 
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Procedure Name: geoDistance( ) 

Input The source individual, øs, and the destination individual, ød;  

Output The shortest distance between øs and ød; 

Begin Procedure 

D ← ∅ ; 

T ← T ∪ {øs};  

For ( ∀øi ∈ C ) 

If (Z[øs, øi] == 1)  D ← D ∪ {øi}; Fi; 

Rof; 

For ( ∀øi ∈ D ) 

If ( Z[øi, ød] == 1 )   

depth(øi) ← depth(øi) + 1;  

Return depth(øi);  

Fi; 

Rof; 

For ( ∀øi ∈D ^ øi  T ) 

depth(øi) ← geoDistance(øi, ød) + 1;  

D ← D − {øi};  

Rof; 

Return minimum{depth(ø1), ..., depth(øm)}; /* m is the # of members in D. */ 

End Procedure 

 

 

As you see, the time complexity of the algorithm is O(N
2
). The main procedure named 

geoDistanceMeasurement( ) forms a typical double-loop construct with a recursive function, 

geoDistance( ), that can be computed in a constant time, O(1), because the number of 

performers in the set, D, ought to be much smaller than the number of individual performers. 

By using the above algorithm devised in this paper, we are able to eventually measure not only 

the standardized index of individual closeness centrality, but also the index of group closeness 

centrality for a workflow-supported org-social network. 

As an operational example, we apply the SocioMatrix-to-DistanceMatrix transformation 

algorithm to the binary/undirected SocioMatrix, Z
b
[N, N], of Table 1. The calculated geodesic 

distance matrix, DistanceMatrix[N, N], is the following Table 2. Remind that from the 

directed performer-flow graph we calculated, as an example, the geodesic (shortest) distances 

between the performer node, ø1 and others, ø2, ø3, ø4, ø5, ø6, ø7, ø8, ø9, ø10, ø11, ø12, ø13, ø14, ø15, 

ø16, ø17, were 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, and 2, respectively. In the table of the 

binary/undirected SocioMatrix, we recognize the different result for the same case (ø1), like 1, 

1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, and 2, in the first row of the table. 
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Table 1. Binary/unDirected SocioMatrix (Z
b
[N, N]) of Fig. 3 

 
 

Table 2. Geodesic Distance Matrix (DistanceMatrix[N, N]) from Table 1 

 

 

3.3 The Quantitation Phase 

The quantitation phase carries out the functional transformation of the Distance-to-CCV 

transformation to measure the individual closeness centralizations by using the result (the 

geodesic distances) of the former transformation. The ultimate goal of the quantitation phase 

aims to answer to the following essential question: 

 How quickly can a performer interact with others in enacting the associated workflow 

procedure by communicating directly or through very few intermediaries? 

That is, through the closeness centrality concept and its measurements we can obtain a 

reasonable level of quantitation results, which is enough to answer to the above question as 
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well as the other questions stated in the beginning of the paper. The closeness centrality 

measures can be applied to the individual performer (individual closeness centrality) as well as 

the group of performers (group closeness centrality). 

 

3.3.1 The DistanceMatrix-to-CCV Transformation 

Based on the geodesic distance matrix, DistanceMatrix[N, N], transformed from the 

SocioMatrix-to-DistanceMatrix transformation function, we eventually measure the closeness 

centralizations of all the individuals. The following formula (2) is for carrying out the 

DistanceMatrix-to-CCV transformation. The result of the transformation is the closeness 

centrality vector, [Cc(ø1), ..., Cc(øn)]. Each quantity of the vector is computed as the inverse of 

the sum of the geodesic distances between its corresponding performer, øi, and the (N − 1) 

other performers. As you see, the measured indices computed from formula (2) can never be 

0.0, because division by zero is mathematically undefined. Thus, the index of individual 

closeness centrality cannot be computed for an isolated performer, which is the case of that 

only a single performer is assigned to enacting all activities of the corresponding workflow 

procedure. Also, we can predict that the lowest index, which is the case of the highest sum of 

the geodesic distances between a focal performer and others, comes out from a performer 

either in a relatively large network or in a small network with relatively long geodesic 

distances from others. 

 The Closeness Centrality Vector 

           
   

 

                      
 
   

      

   

 

                           

 The Standardized Closeness Centrality Vector 

   
         

 
                  

                                                 

 

Formula (3) is for standardizing the index of individual closeness centrality by multiplying 

by (N − 1), in which the corresponding performer is excluded from the total number of 

performers. Suppose that an individual performer has the closest distance to all others, which 

means that the performer has a direct tie to everyone in the network. Then, the computed 

values of indexes will be various according to their network sizes. In order to control the size 

of the network, it is necessary for the individual index to be standardized between 0.0 (even 

then it is never happened) and 1.0. It allows, so, meaningful comparisons of performers’ 

closeness centralities across different sizes of workflow-supported org-social networks. 

 

DistanceMatrix-to-CCV Transformation Algorithm: 

Procedure Name: ClosenessCenralityMeasurement( ) 

Input A Geodesic Distance Matrix, DistanceMatrix[N, N]; 

Output An Individual Closeness Centrality Vector, [  (  ), ...,   (  )];  

Output A Standardized Closeness Centrality Vector, [  
 (  ), ...,   

 (  )];  

Initialize 

N ← |C|; /* Set of Individual Performers, C */  

Begin Procedure 

For ( ∀øi ∈ C ) 
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For ( ∀øj ∈ C, øi  øj ) 

  (  ) ←   (  ) + DistanceMatrix[øi, øj];  

Rof; 

  (  ) ← 
 

      
  

  
 (  ) ←   (  )  × ( N − 1 ) ;  

Rof 

Return [  (  ), ...,   (  )] and [  
 (  ), ...,   

 (  )];  

End Procedure 

 

The following algorithm is a pseudo-coded functional procedure, named as 

ClosenessCenralityMeasurement( ), for implementing the formulas (2) and (3). As you see, 

the algorithm is a straightforward control-logic transforming a geodesic distance matrix 

(DistanceMatrix[N, N]) to an individual closeness centrality vector, ([  (  ), ...,   (  )]), by 

taking the inverse after summing every column of each row in the matrix, and a standardized 

individual closeness centrality vector, [  
 (  ), ...,   

 (  )], by multiplying each quantity of 

the individual closeness centrality vector by (N – 1), as well. Likewise, as an operational 

example, we apply the algorithm to the geodesic distance matrix of Table 2, and the result of 

the DistanceMatrix-to-CCV Transformation is on Table 3. Note that the performer, ø5, has the 

highest closeness centralization measures in CCV and sCCV as 1/22 and 0.73, respectively. 

From this truth, we can answer the question, “Who is the most important or prominent 

performer(s) interacting the most tightly with others in enacting the hiring workflow 

procedure?”. So, the answer is the performer, ø5. 

 
Table 3. Individual Closeness Centrality Vector ([  (  ), ...,   (  )]) from Table 2 

 

 

3.3.2 Group Closeness Centrality 

As the last step of the analysis phase, we remain one more additional transformation to 

quantify the network-wide degree of closeness centralization, which we would call the 

sCCV-to-GCC transformation. The network-wide degree of closeness centralization 

measurement is to quantify the degree of dispersion indicating the hierarchy of closeness 

centralities within a workflow-supported org-social network. In other words, this measure 

implies the extent to which performers in a given network differ in their closeness centralities, 

and it can be calculated by the formula [5] of the index of group closeness centrality as 

followings: 

 The Index of Group Closeness Centrality 
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Table 4. Group Closeness Centrality (GCC) from Table 3 

 
 

In formula (4),   
      denotes the highest standardized individual closeness centrality 

measure observed in a given network, and   
      is the standardized individual closeness 

centrality measure of each of the (N − 1) other performers. The maximum value of the index of 

group closeness centrality ought to be 1.0 when the corresponding network forms completely 

an uneven dispersion in the standardized individual closeness centrality measures, which is in 

the case of that a single performer has the maximum measure and all others have the minimum. 

In contrast, the index of group closeness centrality equals to 0.0 in the case of that every 

performer has the same individual closeness centrality measure. Conclusively, the index of 

group closeness centrality in a workflow-supported org-social network ought to be between 

0.0 and 1.0. The closer that the index value is to 1.0, the more uneven or hierarchical is the 

closeness centralizations of performers in a given network; while on the other hand, the closer 

the index value is to 0.0, then the more the closeness centralization of the network is evenly 

dispersed. We won’t provide the algorithm of the sCCV-to-GCC transformation because of its 

simple and straightforward logic.  

As an operational example, we apply the formula to the standardized individual closeness 

centrality vector of Table 3, and the result is on Table 4. Also, Table 5 shows the geodesic 

distances from the performer, ø5, who is the most prominent performer in enacting the hiring 

workflow procedure, to the other performers, and their closeness centrality measures. The 

direct-tied (its geodesic distance is 1.) nodes with ø5 are ø2, ø3, ø4, ø5, ø7, ø8, ø9, ø14, ø15, ø16, and 

ø17, and the nodes away from ø5 as much as 2-tie (its geodesic distance is 2.) are ø1, ø6, ø10, ø11, 

ø12, and ø13. 

 

Table 5. Geodesic Distances and Closeness Centrality Measures on the Performer, ø5 

 

 

3.3.3 Visualization of the Quantitation Results 

As stated in the introductory statements of the framework, we are particularly interested in 

visualizing the degree of work-intimacy and collaboration (closeness centrality) of every 

workflow performer associated with a specific workflow-supported org-social network. At 

this moment, we would emphasize that, as a future work of the paper, we have a plan to 

extensively apply the theoretical framework to not only a group of workflow models but also 

all the organization-wide workflow packages, and then definitely the visualization phase will 

be the most crucial functionality in the framework and its implemented system.  
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Fig. 4. Closeness Centrality Visualization for the Performer, ø5 

As an operational example, Fig. 5 shows a possible visualization with a screen-snapshot
6
 

of the visual representation of the individual closeness centrality measures centered from the 

performer, ø5, who has the highest closeness centrality measure quantitated from the hiring 

workflow procedure [2]. For the sake of the verification of the visual correctness, we provide 

the geodesic distances from ø5 to the others and the individual closeness centrality measures in 

Table 5. As you can easily recognize on the colored screen-snapshot of the closeness 

centralization graph, the centered node (ø5) is the biggest sized circle, the direct-tied (its 

geodesic distance is 1.) nodes with ø5 are ø2, ø3, ø4, ø5, ø7, ø8, ø9, ø14, ø15, ø16, and ø17, and the 

nodes away from ø5 as much as 2-tie (its geodesic distance is 2.) are ø1, ø6, ø10, ø11, ø12, and ø13. 

Also, it is visually noticeable that the sizes of nodes are figured differently according to the 

magnitude of the individual closeness centrality index. 

4. Related Works 

Recently, workflow literature has just begun to focus on social and collaborative structures on 

process-oriented organizations. The relationship between knowledge management and 

organizational performance has been the subject of discussion in management literature, and 

some results [15-17] found out that there is a significant link between human-centered 

structural knowledge and organizational culture and performance. Our work of the theoretical 

                                                           
6 This screen-snapshot is captured from the system’s closeness centralization measurement module. 
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framework is one of the pioneering activities for digging up new methodologies and 

techniques—discovery, analysis, and quantitation—for workflow-supported org-social 

networking knowledge management. This section gives the descriptions of the research 

statuses and surveys related to each of these issues. 

In order to carry out the closeness centralization measurement, we need to project the 

human-centered associative knowledge from a workflow procedure, and transform it to a form 

of human-centered graph so as to be mathematically analyzed. The performer-flow graph 

formally represented by the workflow-supported org-social network model is to be proposed 

with this intention in the paper, and we have addressed this human-centered transformation 

issue as “workflow-supported org-social networking knowledge discovery issue.” This issue 

can be subdivided into two branches of research approaches—discovery issue and rediscovery 

issue. The rediscovery issue stems from the workflow mining issue that tries to explore human 

behavioral knowledge (enacted org-social networking knowledge) from workflow enactment 

event logs, whereas the discovery issue is related with exploring various human-centered 

associative knowledge (planned org-social networking knowledge) from the growing pile of 

workflow models and packages. A typical research publication concerning the rediscovery 

issue might be [7], in which the authors built a methodology and system to rediscover 

org-social networking knowledge from the petri-net based workflow enactment event logs. 

Also, many research groups pointed out the necessity of rediscovering the performer or human 

behaviors from workflow enactment event logs through those publications, [3,4,8,18], so far. 

Also, the org-social networking knowledge discovery issue was firstly addressed by the 

authors’ research group through proposing a theoretical framework in [9] and implementing 

the framework in [10]. In this paper, we have refined the org-social networking knowledge 

discovery algorithm proposed in [1,9,13], and we efficiently transform the discovered 

org-social networking knowledge to a form of the performer-flow graph so as to be efficiently 

applied for the closeness centralization measurements. 

After either discovering or rediscovering the workflow-supported org-social networking 

knowledge, we need to analyze the knowledge and quantitate the analyzed results in order to 

exert valuable, meaningful, and worth knowledge on workflow-supported organizations. The 

literature has been trying to solve this analysis issue by two approaches, so far. One is to use 

the traditional statistical analysis techniques [3], the other is to employ the sophisticated social 

network analysis techniques already proved in the social science domain and summarily 

introduced in [5] and [19]. In [3], the authors tried to build a fundamental theory for 

discovering organizational work-sharing networks, such as role-based organizational 

work-sharing network and human-based organizational work-sharing network, from a specific 

workflow procedure, and suggested a new statistical analysis approach for statistically 

quantifying the degree of organizational work-sharing and collaboration. [5] and [19] 

elaborated on the social network analysis techniques and the affiliation network analysis 

techniques, respectively. Note that the affiliation network is a special type of the social 

network. The authors’ research group has employed these sophisticated social network 

analysis techniques, such as centrality, prestige, and clique techniques, to analyze the 

workflow-supported org-social networks [13] and affiliation networks [11] explored by the 

discovery methodologies. In particular, we have been actively adopting the centrality 

technique in analyzing the workflow-supported org-social networking knowledge, so far. The 

centrality technique is subdivided into degree-centrality [13], closeness-centrality [12,20], 

betweenness-centrality [21], and eigenvalue-centrality so as to be elaborately applied into a 

real organizational world. As one of those efforts, in this paper, we have tried to conceive the 

algorithmic and procedural framework of closeness centralization measurements and 
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suggested a theoretical guidance to quantitatively analyze and compare the degrees of 

closeness and prominence among workflow-performers in enacting a workflow procedure. 

5. Conclusion 

In this paper, we suggested a theoretical way of discovering, analyzing, and visualizing the 

closeness centralization measures that are quantitatively expressing the prominency and 

collaborative behaviors among workflow-supported performers in enacting a workflow 

procedure. That is, we have built, so far, a theoretical framework for quantitatively and 

graphically measuring the degrees of closeness centralization among performers assigned to 

enact a workflow procedure. The proposed framework supports the three procedural phases, 

discovery, analysis, and quantitation phases, during which they carry out four functional 

transformations, ICN-to-WsoN, WsoN-to-SocioMatrix, SocioMatrix-to-DistanceMatrix, and 

DistanceMatrix-to-CCV transformations. We have also developed a series of algorithmic 

formalisms and verified them through an operational example. As a consequence, we would 

summarily conclude by showing that the theoretical framework is able to answer to the 

questions as follows: 

 Who is the most important or prominent performer(s) interacting the most tightly with 

others in enacting a specific workflow procedure? 

o Answer: the performer whom has the highest quantity in the closeness centrality 

vector or the standardized closeness centrality vector, Maximum(  (  ), ..., 

  (  )). 

 How near is the most prominent performer to others in a workflow-supported org-social 

network? 

o Answer: the geodesic distances from the most prominent performer to others in 

the geodesic distance matrix, DistanceMatrix[N, N]. 

 What is the average distance (or closeness) among performers in a workflow-supported 

social network? In other words, how quickly can a performer interact with others in 

enacting the associated workflow procedure by communicating directly or through very 

few intermediaries? 

o Answer: the index of group closeness centrality, GCC . 

 

At this moment, it is important to emphasize that the proposed framework for the closeness 

centralization measurements of workflow-supported org-social networks be simply not in 

theoretical formulas but in algorithmic formulas. Through the theoretical framework, so, we 

can straightforwardly implement an automatic discovery, analysis, and visualization system 

for the closeness centralization measurements as well as for workflow-supported org-social 

networking knowledge management and intelligence. Likewise, as future works, we need not 

only to elaborate on the functional expansion of the closeness centralization formulas so as for 

the theoretical framework to handle a group of workflow procedures (or a workflow package) 

with organization-wide workflow-performers, but also to develop the remainder centrality 

analysis techniques, like betweenness and eigenvalue centralities, to be applied to 

workflow-supported org-social networks. 
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