• Title/Summary/Keyword: upper and lower bounds

Search Result 252, Processing Time 0.034 seconds

Number Plate Detection System by Using the Night Images

  • Yoshimori, S.;Mitsukura, Y.;Fukumi, M.;Akamatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1249-1253
    • /
    • 2003
  • License plate recognition is very important in an automobile society. This is because, since plate detection accuracy has large influence on subsequent number recognition, it is very important. However, it is very difficult to do it, because a background and a body color of cars are similar to that of the license plate. In this paper, we propose a new thresholds determination method in the various background by using the real-coded genetic algorithm (RGA). By using RGA, the most likely plate colors are decided under various lighting conditions. First, the average brightness Y values of images are calculated. Next, relationship between the Y value and the most likely plate color thresholds (upper and lower bounds)are obtained by RGA. The relationship between thresholds decided from RGA and brightness average is aproximate by using the recursive least squares (RLS) algorithm. In the case of plate detection, thresholds are decided from these functions.

  • PDF

OPTIMAL RADIOCOLORING OF TREES

  • Zhang, Xiaoling
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.831-841
    • /
    • 2019
  • A Radiocoloring (RC) of a graph G is a function f from the vertex set V (G) to the set of all non-negative integers (labels) such that |f(u) - f(v)| ≥ 2 if d(u, v) = 1 and |f(u) - f(v)| ≥ 1 if d(u, v) = 2. The number of discrete labels and the range of labels used are called order and span, respectively. In this paper, we concentrate on the minimum order span Radiocoloring Problem (RCP) of trees. The optimization version of the minimum order span RCP that tries to find, from all minimum order assignments, one that uses the minimum span. We provide attainable lower and upper bounds for trees. Moreover, a complete characterization of caterpillars (as a subclass of trees) with the minimum order span is given.

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

Interval finite element method for complex eigenvalues of closed-loop systems with uncertain parameters

  • Zhang, XiaoMing;Ding, Han
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.163-178
    • /
    • 2007
  • In practical engineering, the uncertain concept plays an important role in the control problems of the vibration structures. In this paper, based on matrix perturbation theory and interval finite element method, the closed-loop vibration control system with uncertain parameters is discussed. A new method is presented to develop an algorithm to estimate the upper and lower bounds of the real parts and imaginary parts of the complex eigenvalues of vibration control systems. The results are derived in terms of physical parameters. The present method is implemented for a vibration control system of the frame structure. To show the validity and effectiveness, we compare the numerical results obtained by the present method with those obtained by the classical random perturbation.

Global Asymptotic Stability of a Class of Nonlinear Time-Delay Systems (일종의 비선형 시간 지연 시스템에 대한 광역 점근적 안정성)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • We analyze the stability property of a class of nonlinear time-delay systems. We show that the state variable is bounded both below and above, and the lower and upper bounds of the state are obtained in terms of a system parameter by using the comparison lemma. We establish a time-delay independent sufficient condition for the global asymptotic stability by employing a Lyapunov-Krasovskii functional obtained from a change of the state variable. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

Optimum Design of Reinforced Concrete Continuous Beams using DCOC (이산성 연속형 최적규준(DCOC)방법에 의한 RC연속보의 최적설계)

  • 조홍동;이상근;구봉근;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.440-446
    • /
    • 1996
  • In this study, a procedure for the economic design of reinforced concrete beams under several design constraints is outlined on the basis of discretized continuum-type optimality criteria (DCOC). The costs to be minimized involve those of concrete, reinforcing steel and formwork. The design constraints include limits on the maximum deflection in a given span, on bending and shear strengths, in addition to upper and lower bounds on design variables. An explicit mathematical derivation of optimality criteria is given based on the well known Kuhn-Tucker mecessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. Self-weight of the spans is also included in the equilibrium equation of the real system and in the optimatlity criteria.

  • PDF

Performance evaluations of chip-spreading orthogonal code divisio moudlation system (칩확산 직교부호분할변조 방식의 성능 평가)

  • 김병훈;이병기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1998-2004
    • /
    • 1997
  • In this paper, we have analyzed the bit error performance ofthe chip-spreading OCDM system proposed in the previous papaer and compared the results, through computer simulations, with those of conventional DS/CDMA system which employs the maximal ration combining method. WE have shown, analytically, that the BER upper bound of the OCDM system coincides with that of the conventional DS/CDMA system and the lower bound exhibits much improved results. From the simulation results, we have confirmed that the BER curves of proposed OCDM system actually lie between the two theoretical bounds and its performance is superior to that of the DS/CDMA system.

  • PDF

Identification of Interval Model for Parametric Uncertain Systems (파라미터 불확실성 시스템의 구간모델 식별)

  • 김동형;우영태;김영철
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.462-470
    • /
    • 2003
  • This paper presents an algorithm of identifying parametric uncertainty by way of an interval model. For a given set of frequency response data from an uncertain linear SISO system of which the upper and the lower bounds of both magnitude and phase responses are represented, the proposed algorithm consists of two main parts: first, the nominal model is identified by using Least Square Estimation (LSE), and then an interval model is constructed by expanding the extremal properties of interval systems, so that tightly enclose the given envelopes within those of interval model. Two numerical examples are given to demonstrate and verify the developed algorithm. The identified interval model can be used for evaluating the worst case performance and stability margins against parametric uncertainty by using some extremal properties on interval systems.

An Analysis on Efficiency for the Environmental Friendly Agricultural Product of Strawberry in GyeongBuk Province (경북지역 친환경딸기 농가의 인증유형에 따른 효율성 분석)

  • Lee, Sang-Ho;Song, Kyung-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.487-500
    • /
    • 2013
  • The purpose of this study is to estimate efficiency of environmental-friendly agricultural product by using Data Envelopment Analysis. A proposed method employs a bootstrapping approach to generating efficiency estimates through Monte Carlo simulation resampling process. The technical efficiency, pure technical efficiency, and scale efficiency measure of strawberry by pesticide-free certification is 0.967, 0.995, 0.968 respectively. However those of bias-corrected estimates are 0.918, 0.983, 0.934. We know that the DEA estimator is an upward biased estimator. In technical efficiency, average lower and upper confidence bounds of 0.807 and 0.960. According to these results, the DEA bootstrapping model used here provides bias-corrected and confidence intervals for the point estimates, it is more preferable.

H2 controller Design for Networked Contorl Systems with Time-Varying Delay (시변시간지연을 가지는 네트워크기반 제어시스템의 H2 제어기 설계)

  • Lee Hong Hee;Ro Young Shick;Kang Hee Jun;Suh Young Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1196-1201
    • /
    • 2004
  • H₂ controller is proposed for networked control systems with time-varying delay. The time-varying network delay is assumed to be unknown, but its lower and upper bounds are assumed to be known. The time-varying delay is treated like a parameter variation and robust control technique is used to deal with the time-varying delay. The proposed controller can be computed by solving linear matrix inequalities. Through numerical simulations, the proposed controller is verified.