References
- Alefeld, G. and Herzberber, J. (1983), Introductions to Interval Computations. Academic Press, New York
- Alefeld, G. (1991), Advanced Matrix Theory for Scientists and Engineers. 2nd Edition, Abacus Press
- Ben-Haim, Y. and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied Mechanics. Elsevier, New York
- Chen, R. and Ward, A.C. (1997), 'Generalizing interval matrix operations for design', J. Mech. Des., 119, 655-672
- Chen, S.H. (1999), Matrix Perturbation Theory in Structural Dynamic Designs. Science Press, Beijing. (in Chinese)
- Chen, S.H., Lian, H.D. and Yang, X.W. (2002), 'Dynamic response analysis for structures with interval parameters', Struct. Eng. Mech., 13(3), 299-312 https://doi.org/10.12989/sem.2002.13.3.299
- Chen, S.H., Liu, C., and Chen, Y.D. (2004), 'The standard deviations for eigenvalues of the closed-loop systems with random parameters', Struct. Eng. Mech., 18(3), 331-342 https://doi.org/10.12989/sem.2004.18.3.331
- Chen, S.H. and Wu, J. (2004), 'Interval optimization of dynamic response for uncertain structures with natural frequency constraints', Eng. Struct., 26, 221-232 https://doi.org/10.1016/j.engstruct.2003.09.012
- Dimarogonas, A.D. (1995), 'Interval analysis of vibration systems', J. Sound Vib., 183, 739-749 https://doi.org/10.1006/jsvi.1995.0283
- Ferrara, A. and Giacomini, L. (2000), 'Control of a class of mechanical systems with uncertainties Via a constructive adaptive/Second order VSC approach', Trans. ASME J. Dyn. Syst., 122(1), 33-39 https://doi.org/10.1115/1.482426
- Ganzerli, S. and Pantelides, C.P. (2000), 'Optimum structural design via convex model superposition', Comput. Struct., 74(6), 639-647 https://doi.org/10.1016/S0045-7949(99)00077-2
- Ganzerli, S. and Pantelides, C.P. (1999), 'Load and resistance convex models for optimum design', Struct. Optimization, 17(4), 259-268 https://doi.org/10.1007/BF01207002
- Krodkiewski, J.M. (2000), 'Stabilization of motion of helicoptor rotor blades using delayed feedback-modelling. computer simulation and experimental verification', J. Sound Vib., 234, 591-610 https://doi.org/10.1006/jsvi.1999.2878
- Li, Y.Y. and Yarn, L.H. (2001), 'Robust vibration control of uncertain systems using variable parameter feedback and model-based fuzzy strategies', Comput. Struct., 79(1), 109-119
- Moore, R.E.(1979), Methods and Applications ofInterval Analysis, SIAM, Philadelphia
- Pantelides, C.P. and Booth, B.C. (Jan. 2000), 'Computer-aided design of optimal structures with uncertainty', Comput. Struct., 74(3), 293-307 https://doi.org/10.1016/S0045-7949(99)00047-4
- Pantelides, C.P. and Ganzerli, S. (Mar. 1998), 'Design of trusses under uncertain loads using convex models', J.Struct. Eng., ASCE, 124(3), 318-329 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(318)
- Shin, Y.S. and Grandhi, R.V. (2001), 'A global structural optimization technique using an interval method', Struct. Multidisc. Optim, 22, 351-363 https://doi.org/10.1007/s00158-001-0155-1
- Spencer, B.F. and Sain, M.K. Jr. (1992), 'Probabilistic stability measures for controlled structures subject to real parameter uncertainties', Smart Master Struct., 1, 294-305 https://doi.org/10.1088/0964-1726/1/4/004
- Venini, P. (1998), 'Robust control of uncertain structures', Comput. Struct., 67, 165-174 https://doi.org/10.1016/S0045-7949(97)00168-5
Cited by
- Dynamic eigenvalue analysis of structures with interval parameters based on affine arithmetic vol.33, pp.4, 2007, https://doi.org/10.12989/sem.2009.33.4.539