DOI QR코드

DOI QR Code

Interval finite element method for complex eigenvalues of closed-loop systems with uncertain parameters

  • Zhang, XiaoMing (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Ding, Han (School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2006.03.27
  • Accepted : 2006.11.22
  • Published : 2007.05.30

Abstract

In practical engineering, the uncertain concept plays an important role in the control problems of the vibration structures. In this paper, based on matrix perturbation theory and interval finite element method, the closed-loop vibration control system with uncertain parameters is discussed. A new method is presented to develop an algorithm to estimate the upper and lower bounds of the real parts and imaginary parts of the complex eigenvalues of vibration control systems. The results are derived in terms of physical parameters. The present method is implemented for a vibration control system of the frame structure. To show the validity and effectiveness, we compare the numerical results obtained by the present method with those obtained by the classical random perturbation.

Keywords

References

  1. Alefeld, G. and Herzberber, J. (1983), Introductions to Interval Computations. Academic Press, New York
  2. Alefeld, G. (1991), Advanced Matrix Theory for Scientists and Engineers. 2nd Edition, Abacus Press
  3. Ben-Haim, Y. and Elishakoff, I. (1990), Convex Models of Uncertainty in Applied Mechanics. Elsevier, New York
  4. Chen, R. and Ward, A.C. (1997), 'Generalizing interval matrix operations for design', J. Mech. Des., 119, 655-672
  5. Chen, S.H. (1999), Matrix Perturbation Theory in Structural Dynamic Designs. Science Press, Beijing. (in Chinese)
  6. Chen, S.H., Lian, H.D. and Yang, X.W. (2002), 'Dynamic response analysis for structures with interval parameters', Struct. Eng. Mech., 13(3), 299-312 https://doi.org/10.12989/sem.2002.13.3.299
  7. Chen, S.H., Liu, C., and Chen, Y.D. (2004), 'The standard deviations for eigenvalues of the closed-loop systems with random parameters', Struct. Eng. Mech., 18(3), 331-342 https://doi.org/10.12989/sem.2004.18.3.331
  8. Chen, S.H. and Wu, J. (2004), 'Interval optimization of dynamic response for uncertain structures with natural frequency constraints', Eng. Struct., 26, 221-232 https://doi.org/10.1016/j.engstruct.2003.09.012
  9. Dimarogonas, A.D. (1995), 'Interval analysis of vibration systems', J. Sound Vib., 183, 739-749 https://doi.org/10.1006/jsvi.1995.0283
  10. Ferrara, A. and Giacomini, L. (2000), 'Control of a class of mechanical systems with uncertainties Via a constructive adaptive/Second order VSC approach', Trans. ASME J. Dyn. Syst., 122(1), 33-39 https://doi.org/10.1115/1.482426
  11. Ganzerli, S. and Pantelides, C.P. (2000), 'Optimum structural design via convex model superposition', Comput. Struct., 74(6), 639-647 https://doi.org/10.1016/S0045-7949(99)00077-2
  12. Ganzerli, S. and Pantelides, C.P. (1999), 'Load and resistance convex models for optimum design', Struct. Optimization, 17(4), 259-268 https://doi.org/10.1007/BF01207002
  13. Krodkiewski, J.M. (2000), 'Stabilization of motion of helicoptor rotor blades using delayed feedback-modelling. computer simulation and experimental verification', J. Sound Vib., 234, 591-610 https://doi.org/10.1006/jsvi.1999.2878
  14. Li, Y.Y. and Yarn, L.H. (2001), 'Robust vibration control of uncertain systems using variable parameter feedback and model-based fuzzy strategies', Comput. Struct., 79(1), 109-119
  15. Moore, R.E.(1979), Methods and Applications ofInterval Analysis, SIAM, Philadelphia
  16. Pantelides, C.P. and Booth, B.C. (Jan. 2000), 'Computer-aided design of optimal structures with uncertainty', Comput. Struct., 74(3), 293-307 https://doi.org/10.1016/S0045-7949(99)00047-4
  17. Pantelides, C.P. and Ganzerli, S. (Mar. 1998), 'Design of trusses under uncertain loads using convex models', J.Struct. Eng., ASCE, 124(3), 318-329 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(318)
  18. Shin, Y.S. and Grandhi, R.V. (2001), 'A global structural optimization technique using an interval method', Struct. Multidisc. Optim, 22, 351-363 https://doi.org/10.1007/s00158-001-0155-1
  19. Spencer, B.F. and Sain, M.K. Jr. (1992), 'Probabilistic stability measures for controlled structures subject to real parameter uncertainties', Smart Master Struct., 1, 294-305 https://doi.org/10.1088/0964-1726/1/4/004
  20. Venini, P. (1998), 'Robust control of uncertain structures', Comput. Struct., 67, 165-174 https://doi.org/10.1016/S0045-7949(97)00168-5

Cited by

  1. Dynamic eigenvalue analysis of structures with interval parameters based on affine arithmetic vol.33, pp.4, 2007, https://doi.org/10.12989/sem.2009.33.4.539