In this study, the conformable fractional derivative(CFD) of order 𝝔 in conjunction with the LC operator of orderρ is used to develop the model of the transmission of the A(H1N1) influenza infection. A brand-new A(H1N1) influenza infection model is presented, with a population split into four different compartments. Fixed point theorems were used to prove the existence of the solutions and uniqueness of this model. The basic reproduction number R0 was determined. The least and most sensitive variables that could alter R0 were then determined using normalized forward sensitivity indices. Through numerical simulations carried out with the aid of the Adams-Moulton approach, the study also investigated the effects of numerous biological characteristics on the system. The findings demonstrated that if 𝝔 < 1 and ρ < 1 under the CFD, also the findings demonstrated that if 𝝔 = 1 and ρ = 1 under the CFD, the A(H1N1) influenza infection will not vanish.
The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.
In this paper, we have studied dynamics of fractional order mathematical model of malaria transmission for two groups of human population say semi-immune and non-immune along with growing stages of mosquito vector. The present fractional order mathematical model is the extension of integer order mathematical model proposed by Ousmane Koutou et al. For this study, Atangana-Baleanu fractional order derivative in Caputo sense has been implemented. In the view of memory effect of fractional derivative, this model has been found more realistic than integer order model of malaria and helps to understand dynamical behaviour of malaria epidemic in depth. We have analysed the proposed model for two precisely defined set of parameters and initial value conditions. The uniqueness and existence of present model has been proved by Lipschitz conditions and fixed point theorem. Generalised Euler method is used to analyse numerical results. It is observed that this model is more dynamic as we have considered all classes of human population and mosquito vector to analyse the dynamics of malaria.
AHMED AL-ZGHOUL;TARIQ QAWASMEH;RAED HATAMLEH;ABEDALKAREEM ALHAZIMEH
Journal of applied mathematics & informatics
/
제42권4호
/
pp.749-759
/
2024
In this manuscript, we formulate the notion of Ω(H, θ)-contraction on a self mapping f : W → W, this contraction based on the concept of Ω-distance mappings equipped on G-metric spaces together with the concept of H-simulation functions and the class of Θ-functions, we employ our new contraction to unify the existence and uniqueness of some new fixed point results. Moreover, we formulate a numerical example and a significant application to show the novelty of our results; our application is based on the significant idea that the solution of an equation in a certain condition is similar to the solution of a fixed point equation. We are utilizing this idea to prove that the equation, under certain conditions, not only has a solution as the Intermediate Value Theorem says but also that this solution is unique.
We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$$d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.
소수의 개념적 측면에 대한 학생들의 이해 부족 현상이 목격되는바 본 연구는 학생들이 소수 개념의 본질을 바르게 이해하도록 돕고자, 소수 개념 발전 역사를 조망하고 교과서의 개념 도입 방법을 분석하였다. 고대 그리스에서 소수는 곱셈 원자였다. 당시 단위는 수가 아니었지만, 소수 표기 개발로 단위가 수로 통합되면서 1의 소수성이 문제시 되었다. 소인수분해의 유일성을 근거로 1이 소수에서 배제되었으며, 이후 발전을 거듭하여 prime 개념과 irreducible 개념이 자리 잡게 되었다. 소수 개념 발전의 역사는 소수가 곧 곱셈 원자라는 사실이 개념의 본질임을 명백히 드러낸다. 교과서 분석 결과, 교과서는 소수 개념을 결정론적 시각 혹은 게임으로 도입하여 개념 본질을 드러내지 못하는 문제, 개념 도입 후 분석적 개념 정의로 급진적 전개가 이루어지는 문제 등이 있었다. 분석 결과에 기초하여 소수의 개념적 면에 주목하도록 돕는 것과 관련하여 몇 가지 교수학적 시사점을 제공하였다.
선행된 연구에서의 성공적인 수심도 작성 예에 뒤이어, 항공전자탐사를 이용한 해저면 특성파악 가능성이 고찰되었다. 헬리콥터에 탑재된 시간영역전자탐사 (TEM) 장비에서 얻어진 자료의 1D 역산으로부터 추정된 퇴적층의 두께가 해양 탄성파 연구에 기초하여 얻어진 추정치와 비교되었다. 일반적으로, 해수의 깊이가 대략 20 m이고 퇴적층의 두께가 40 m 미만이면 퇴적층의 두께 즉 비전도성 기반암까지의 깊이는 두 경우에 있어서 타당한 범위 내에서 일치됨을 보였다. 잡음이 섞인 합성자료의 역산은 초기 모형이 실제모형과 차이가 나는 경우에도 수직 전자탐사 유일성 이론과 일치하게 역산 후 실제모형과 매우 닮은 결과를 보여주었다. 잡음이 섞인 합성자료로부터 얻어진 천해 해수 깊이에 관한 표준편차는 대략 깊이의 ${\Box}5\;%$ 정도였으며, 이는 실제자료의 역산 시 대략 ${\pm}1\;m$ 정도의 오차를 우발할 수 있다. 이에 상응하는 기반암 깊이 추정의 불확실성은 대략 ${\pm}10\;%$에 이른다. 잡음이 포함된 합성자료로부터 얻어진 해수와 퇴적층의 평균 역산 두께는 대략 1 m 정도의 정밀도를 나타냈고, 중합에 의해 정밀도가 향상되었다. 주의 깊게 보정된 항공 TEM 자료를 이용하면 퇴적층의 두께와 기반암의 지형을 조사할 수 있다는 가능성을 알 수 있었으며, 천해에서의 해저면 저항치를 알아내기 위한 방법으로서의 가능성도 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.