References
- Ko, H., Kim, E., Kim, I., Lee, B., Han, J., Choi, S., Kim, J., Kim, H., Jeong, S., Jo, J., Choi, H., & Choi, H. (2018). Secondary mathematics 1. Seoul: Kyohaksa.
- Min, S. Y. (2002). A study on the historico-genetic principle of learning and teaching mathematics. An unpublished doctoral dissertation at the Graduate School of Seoul National University.
- Park, J., & Kim, Y. (trans.) (2000). Plato's Timaeus. Seoul: Seokwangsa.
- Lee, J., Choi, B., Kim, D., Lee, J., Kim, S., Won, Y., Kim, H., Kim, S., & Kang, S. (2018). Secondary mathematics 1. Seoul: Chunjae education.
- Chang, K., Kang, H., Kim, D., Ahn, J., Lee, D., Park, J., Jeong, K., Hong, E., Kim, M., Park, J., Ji, Y., & Goo, N. (2018). Secondary mathematics 1. Seoul: Jihaksa.
- Jo, K., & Kwon, O. (2010). Middle school students' understanding about prime number. School Mathematics, 12(3), 371-388.
- Agargun, A. G., & Fletcher, C. R. (1997) The fundamental theorem of arithmetic dissected, Math. Gazette, 81, 53-57. https://doi.org/10.2307/3618768
- Agargun, A. G., & Ozkan, E. M. (2011) A historical survey of the fundamental theorem of arithmetic, Historia Math. 28, 207-214. https://doi.org/10.1006/hmat.2001.2318
- Andre, W. (2007) Number Theory: An Approach through History from Hammurapi to Legendre. Modern Birkhauser Classics. Boston, MA: Birkhauser.
- Caldwell. C. K., Reddick, A., Xiong, Y., & Keller, Wilfrid (2012). The history of the primality of one: a selection of sources. Journal of Integer Sequences, 15, 1-40.
- Caldwell, C. K., & Xiong, Y. (2012). What is the smallest prime? Journal of Integer Sequences, 15, Article 12.9.7
- Curtis, M., & Tularam, G. A. (2011). The importance of numbers and the need to study primes: the prime questions. Journal of Mathematics and Statistics, 7(4), 262-269. https://doi.org/10.3844/jmssp.2011.262.269
- Euler, L. (1770). Vollstandige Anleitung zur Algebra (2 vols.), der Wiss., St.-Petersburg: Kays. Acad.
- Fitzpatrick, R. (2007). Euclid's elements of geometry. The Greek text of J. L. Heiberg(1883-1885) from Euclids Elementa, edidit et Latine interpretatus est I. L. Heiberg, in aedibus. B. G. Teubneri, 1883-1885. (R. Fitzpatrick, Ed., & R. Fitzpatrick, Trans.).
- Goles, E., Schulz, O., & Markus, M. (2000). A biological generator of prime numbers. Nonlinear Phenomena in Complex Systems, 3, 208-213.
- Heath, T. L. (1908). The thirteen books of Euclid's elements translated from the text of Heiberg with introduction and commentary. Volume II books III-IX, Cambridge: Cambridge University Press.
- Heaton, L. (2015). A brief history of mathematical thought: key concepts and where they come form. London: Robinson.
- Hungerford, T. W. (2013). Abstract algebra: an introduction (3rd ed.). Cengage Learning.
- Katz, K. U., & Katz, M. G. (2011) Stevin numbers and reality, available from http://arxiv.org/abs/1107.3688v2.
- Oladejo, N. K., & Adetunde, I. A. (2009). A numerical test on the Riemann hypothesis with applications. Journal of Mathematics and Statistics, 5(1), 47-53. https://doi.org/10.3844/jmssp.2009.47.53
- Prestet, J. (1689). Nouveaux elemens des mathematiques, Paris: Andre Pralard.
- Reddick, A., & Xiong, Y. (2012). The search for one as a prime number: from ancient greece to modern times. Electronic Journal of Undergraduate Mathematics. Volume 16, 1-13.
- Sautoy, M. (2003). The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: HaperCollins.
- Smith, D. E. (1958). History of Mathematics, Vol. II, New York: Dover.
- Stanford Encyclopedia of Philosophy (2019). https://plato.stanford.edu/entries/plato-timaeus.
- Starbird, M. L. (2008). The mathematics behind prime numbers. J. Math. Comput. Sci. Scholarship, 1, 15-19.
- Stein, W., & Mazur, B. (2007). What is Riemann's hypothesis? Lecture presented at Summer Institute for Mathematics at the University of Washington, DC.
- Wikipedia (2017). https://en.wikipedia.org/wiki/Prime_number
- Zazkis, R., & Liljedahl, P. (2004). Understanding Primes: the role of representation. Journal for Research in Mathematics Education, 35(3), 164-186. https://doi.org/10.2307/30034911