DOI QR코드

DOI QR Code

A pedagogical discussion based on the historical analysis of the the development of the prime concept

소수(prime) 개념 발전의 역사 분석에 따른 교수학적 논의

  • Received : 2019.05.31
  • Accepted : 2019.08.03
  • Published : 2019.09.30

Abstract

In order to help students to understand the essence of prime concepts, this study looked at the history of prime concept development and analyzed how to introduce the concept of textbooks. In ancient Greece, primes were multiplicative atoms. At that time, the unit was not a number, but the development of decimal representations led to the integration of the unit into the number, which raised the issue of primality of 1. Based on the uniqueness of factorization into prime factor, 1 was excluded from the prime, and after that, the concept of prime of the atomic context and the irreducible concept of the divisor context are established. The history of the development of prime concepts clearly reveals that the fact that prime is the multiplicative atom is the essence of the concept. As a result of analyzing the textbooks, the textbook has problems of not introducing the concept essence by introducing the concept of prime into a shaped perspectives or using game, and the problem that the transition to analytic concept definition is radical after the introduction of the concept. Based on the results of the analysis, we have provided several pedagogical implications for helping to focus on a conceptual aspect of prime number.

소수의 개념적 측면에 대한 학생들의 이해 부족 현상이 목격되는바 본 연구는 학생들이 소수 개념의 본질을 바르게 이해하도록 돕고자, 소수 개념 발전 역사를 조망하고 교과서의 개념 도입 방법을 분석하였다. 고대 그리스에서 소수는 곱셈 원자였다. 당시 단위는 수가 아니었지만, 소수 표기 개발로 단위가 수로 통합되면서 1의 소수성이 문제시 되었다. 소인수분해의 유일성을 근거로 1이 소수에서 배제되었으며, 이후 발전을 거듭하여 prime 개념과 irreducible 개념이 자리 잡게 되었다. 소수 개념 발전의 역사는 소수가 곧 곱셈 원자라는 사실이 개념의 본질임을 명백히 드러낸다. 교과서 분석 결과, 교과서는 소수 개념을 결정론적 시각 혹은 게임으로 도입하여 개념 본질을 드러내지 못하는 문제, 개념 도입 후 분석적 개념 정의로 급진적 전개가 이루어지는 문제 등이 있었다. 분석 결과에 기초하여 소수의 개념적 면에 주목하도록 돕는 것과 관련하여 몇 가지 교수학적 시사점을 제공하였다.

Keywords

References

  1. Ko, H., Kim, E., Kim, I., Lee, B., Han, J., Choi, S., Kim, J., Kim, H., Jeong, S., Jo, J., Choi, H., & Choi, H. (2018). Secondary mathematics 1. Seoul: Kyohaksa.
  2. Min, S. Y. (2002). A study on the historico-genetic principle of learning and teaching mathematics. An unpublished doctoral dissertation at the Graduate School of Seoul National University.
  3. Park, J., & Kim, Y. (trans.) (2000). Plato's Timaeus. Seoul: Seokwangsa.
  4. Lee, J., Choi, B., Kim, D., Lee, J., Kim, S., Won, Y., Kim, H., Kim, S., & Kang, S. (2018). Secondary mathematics 1. Seoul: Chunjae education.
  5. Chang, K., Kang, H., Kim, D., Ahn, J., Lee, D., Park, J., Jeong, K., Hong, E., Kim, M., Park, J., Ji, Y., & Goo, N. (2018). Secondary mathematics 1. Seoul: Jihaksa.
  6. Jo, K., & Kwon, O. (2010). Middle school students' understanding about prime number. School Mathematics, 12(3), 371-388.
  7. Agargun, A. G., & Fletcher, C. R. (1997) The fundamental theorem of arithmetic dissected, Math. Gazette, 81, 53-57. https://doi.org/10.2307/3618768
  8. Agargun, A. G., & Ozkan, E. M. (2011) A historical survey of the fundamental theorem of arithmetic, Historia Math. 28, 207-214. https://doi.org/10.1006/hmat.2001.2318
  9. Andre, W. (2007) Number Theory: An Approach through History from Hammurapi to Legendre. Modern Birkhauser Classics. Boston, MA: Birkhauser.
  10. Caldwell. C. K., Reddick, A., Xiong, Y., & Keller, Wilfrid (2012). The history of the primality of one: a selection of sources. Journal of Integer Sequences, 15, 1-40.
  11. Caldwell, C. K., & Xiong, Y. (2012). What is the smallest prime? Journal of Integer Sequences, 15, Article 12.9.7
  12. Curtis, M., & Tularam, G. A. (2011). The importance of numbers and the need to study primes: the prime questions. Journal of Mathematics and Statistics, 7(4), 262-269. https://doi.org/10.3844/jmssp.2011.262.269
  13. Euler, L. (1770). Vollstandige Anleitung zur Algebra (2 vols.), der Wiss., St.-Petersburg: Kays. Acad.
  14. Fitzpatrick, R. (2007). Euclid's elements of geometry. The Greek text of J. L. Heiberg(1883-1885) from Euclids Elementa, edidit et Latine interpretatus est I. L. Heiberg, in aedibus. B. G. Teubneri, 1883-1885. (R. Fitzpatrick, Ed., & R. Fitzpatrick, Trans.).
  15. Goles, E., Schulz, O., & Markus, M. (2000). A biological generator of prime numbers. Nonlinear Phenomena in Complex Systems, 3, 208-213.
  16. Heath, T. L. (1908). The thirteen books of Euclid's elements translated from the text of Heiberg with introduction and commentary. Volume II books III-IX, Cambridge: Cambridge University Press.
  17. Heaton, L. (2015). A brief history of mathematical thought: key concepts and where they come form. London: Robinson.
  18. Hungerford, T. W. (2013). Abstract algebra: an introduction (3rd ed.). Cengage Learning.
  19. Katz, K. U., & Katz, M. G. (2011) Stevin numbers and reality, available from http://arxiv.org/abs/1107.3688v2.
  20. Oladejo, N. K., & Adetunde, I. A. (2009). A numerical test on the Riemann hypothesis with applications. Journal of Mathematics and Statistics, 5(1), 47-53. https://doi.org/10.3844/jmssp.2009.47.53
  21. Prestet, J. (1689). Nouveaux elemens des mathematiques, Paris: Andre Pralard.
  22. Reddick, A., & Xiong, Y. (2012). The search for one as a prime number: from ancient greece to modern times. Electronic Journal of Undergraduate Mathematics. Volume 16, 1-13.
  23. Sautoy, M. (2003). The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: HaperCollins.
  24. Smith, D. E. (1958). History of Mathematics, Vol. II, New York: Dover.
  25. Stanford Encyclopedia of Philosophy (2019). https://plato.stanford.edu/entries/plato-timaeus.
  26. Starbird, M. L. (2008). The mathematics behind prime numbers. J. Math. Comput. Sci. Scholarship, 1, 15-19.
  27. Stein, W., & Mazur, B. (2007). What is Riemann's hypothesis? Lecture presented at Summer Institute for Mathematics at the University of Washington, DC.
  28. Wikipedia (2017). https://en.wikipedia.org/wiki/Prime_number
  29. Zazkis, R., & Liljedahl, P. (2004). Understanding Primes: the role of representation. Journal for Research in Mathematics Education, 35(3), 164-186. https://doi.org/10.2307/30034911