DOI QR코드

DOI QR Code

THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B-1+3/qq,

  • Farwig, Reinhard (Fachbereich Mathematik Technische Universitat Darmstadt) ;
  • Giga, Yoshikazu (Graduate School of Mathematical Sciences University of Tokyo) ;
  • Hsu, Pen-Yuan (Graduate School of Mathematical Sciences University of Tokyo)
  • Received : 2016.08.10
  • Accepted : 2016.11.28
  • Published : 2017.09.01

Abstract

We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$ $d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.

Keywords

References

  1. H. Amann, Linear and Quasilinear Parabolic Equations, Birkhauser Verlag, Basel, 1995.
  2. H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), no. 1, 16-98. https://doi.org/10.1007/s000210050018
  3. H. Amann, Nonhomogeneous Navier-Stokes equations with integrable low-regularity data, Int. Math. Ser., 1-28, Kluwer Academic/Plenum Publishing, New York, 2002.
  4. H. Amann, Navier-Stokes equations with nonhomogeneous Dirichlet data, J. Nonlinear Math. Phys. 10 (2003), Suppl. 1, 1-11.
  5. R. Farwig and Y. Giga, Well-chosen weak solutions of the instationary Navier-Stokes system and their uniqueness, Hokkaido Math J., to appear.
  6. R. Farwig, Y. Giga, and P.-Y. Hsu, Initial values for the Navier-Stokes equations in spaces with weights in time, Funkcial. Ekvac. 59 (2016), 199-216. https://doi.org/10.1619/fesi.59.199
  7. R. Farwig, Y. Giga, and P.-Y. Hsu, On the continuity of the solutions to the Navier-Stokes equations with initial data in critical Besov spaces, TU Darmstadt, FB Mathematik, Preprint no. 2710, 2016.
  8. R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), no. 4, 607-643. https://doi.org/10.2969/jmsj/04640607
  9. R. Farwig and H. Sohr, Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes equations, Math. Ann. 345 (2009), no. 3, 631-642. https://doi.org/10.1007/s00208-009-0368-y
  10. R. Farwig, H. Sohr, and W. Varnhorn, On optimal initial value conditions for local strong solutions of the Navier-Stokes equations, Ann. Univ. Ferrara Sez. VII Sci. Mat. 55 (2009), no. 1, 89-110. https://doi.org/10.1007/s11565-009-0066-4
  11. R. Farwig and Y. Taniuchi, On the energy equality of Navier-Stokes equations in general unbounded domains, Arch. Math. 95 (2010), no. 5, 447-456. https://doi.org/10.1007/s00013-010-0187-0
  12. H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 16 (1964), 269-315. https://doi.org/10.1007/BF00276188
  13. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, New York, 1998.
  14. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces, Math. Z. 178 (1981), no. 3, 297-329. https://doi.org/10.1007/BF01214869
  15. Y. Giga, Solution for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Di erential Equations 61 (1986), no. 2, 186-212.
  16. Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), no. 3, 267-281. https://doi.org/10.1007/BF00276875
  17. Y. Giga and H. Sohr, Abstract $L^q$-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), no. 1, 72-94. https://doi.org/10.1016/0022-1236(91)90136-S
  18. B. H. Haak and P. C. Kunstmann, On Kato's method for Navier-Stokes equations, J. Math. Fluid Mech. 11 (2009), no. 4, 492-535. https://doi.org/10.1007/s00021-008-0270-5
  19. J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639-681. https://doi.org/10.1512/iumj.1980.29.29048
  20. E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1950/1951), 213-231.
  21. T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in ${\mathbb{R}}^m$, with applications to weak solutions, Math. Z. 187 (1984), no. 4, 471-480. https://doi.org/10.1007/BF01174182
  22. A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids, Amer. Math. Soc. Transl. II 24 (1963), 79-106.
  23. H. Kozono and M. Yamazaki, Local and global unique solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,{\infty}}1$, Houston J. Math. 21 (1995), no. 4, 755-799.
  24. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248. https://doi.org/10.1007/BF02547354
  25. A. Lunardi, Interpolation Theory, Edizioni Della Normale, Sc. Norm. Super. di Pisa, 2009.
  26. T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$-spaces, Hiroshima Math. J. 11 (1981), no. 1, 9-20.
  27. M. H. Ri, P. Zhang, and Z. Zhang, Global well-posedness for Navier-Stokes equations with small initial value in $B^0_{n,{\infty}}({\Omega})$, J. Math. Fluid Mech. 18 (2016), no. 1, 103-131. https://doi.org/10.1007/s00021-015-0243-4
  28. H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhauser Verlag, Basel, 2001.
  29. V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467-529. https://doi.org/10.1007/BF01084616
  30. E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514.
  31. R. S. Strichartz, $L^p$ estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), 33-50.
  32. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.