• Title/Summary/Keyword: unconditionally stable

Search Result 48, Processing Time 0.021 seconds

Transient Response of Magnetic Field Integral Equation Using Laguerre Polynomials as Temporal Expansion Functions (라겐르 함수를 시간영역 전개함수로 이용한 자장 적분방정식의 과도 응답)

  • 정백호;정용식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • In this Paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre·polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.

Study for the Pertinent Scheme of the One Dimensional FDM Analysis (1차원 압밀 F.D.M 해석의 최적도식(Scheme) 연구)

  • 김팔규;김지호;구기욱;류권일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.631-638
    • /
    • 2000
  • Pioneering work by Terzaghi imparted scientific and mathematical bases to many aspects of this subject and many people use this theory to measure the consolidation settlement until now. In this paper, Finite Difference Methods for consolidation are considered. First, it is shown the stability criterion of Explicit scheme and the Crank-Nicolson scheme, although unconditionally stable in the mathematical sense, produces physically unrealistic solutions when the time step is large. it is also shown that The Fully Implicit scheme shows more satisfactory behavior, but is less accurate for small time steps. and then we need to decide what scheme is more proper to consolidation. The purpose of this paper is to suggest the pertinent scheme to consolidation.

  • PDF

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

  • Zhang, H.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and $Gr\ddot{u}nwald$-Letnikov(G-L) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

  • PDF

AN OVERVIEW OF BDF2 GAUGE-UZAWA METHODS FOR INCOMPRESSIBLE FLOWS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.233-251
    • /
    • 2011
  • The Gauge-Uzawa method [GUM] in [9] which is a projection type algorithm to solve evolution Navier-Stokes equations has many advantages and superior performance. But this method has been studied for backward Euler time discrete scheme which is the first order technique, because the classical second order GUM requests rather strong stability condition. Recently, the second order time discrete GUM was modified to be unconditionally stable and estimated errors in [12]. In this paper, we contemplate several GUMs which can be derived by the same manner within [12], and we dig out properties of them for both stability and accuracy. In addition, we evaluate an stability condition for the classical GUM to construct an adaptive GUM for time to make free from strong stability condition of the classical GUM.

RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR PARABOLIC PROBLEMS

  • Jun, Youn-Bae;Mai, Tsun-Zee
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.281-294
    • /
    • 2006
  • Many partial differential equations defined on a rectangular domain can be solved numerically by using a domain decomposition method. The most commonly used decompositions are the domain being decomposed in stripwise and rectangular way. Theories for non-overlapping domain decomposition(in which two adjacent subdomains share an interface) were often focused on the stripwise decomposition and claimed that extensions could be made to the rectangular decomposition without further discussions. In this paper we focus on the comparisons of the two ways of decompositions. We consider the unconditionally stable scheme, the MIP algorithm, for solving parabolic partial differential equations. The SOR iterative method is used in the MIP algorithm. Even though the theories are the same but the performances are different. We found out that the stripwise decomposition has better performance.

  • PDF

ANALYSIS OF SOME PROJECTION METHODS FOR THE INCOMPRESSIBLE FLUIDS WITH MICROSTRUCTURE

  • Jiang, Yao-Lin;Yang, Yun-Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.471-506
    • /
    • 2018
  • In this article, some projection methods (or fractional-step methods) are proposed and analyzed for the micropolar Navier-Stokes equations (MNSE). These methods allow us to decouple the MNSE system into two sub-problems at each timestep, one is the linear and angular velocities system, the other is the pressure system. Both first-order and second-order projection methods are considered. For the classical first-order projection scheme, the stability and error estimates for the linear and angular velocities and the pressure are established rigorously. In addition, a modified first-order projection scheme which leads to some improved error estimates is also proposed and analyzed. We also present the second-order projection method which is unconditionally stable. Ample numerical experiments are performed to confirm the theoretical predictions and demonstrate the efficiency of the methods.

A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity (과도 선형 동탄성 문제의 시간영역 유한요소해석)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE ROSENAU-BURGERS EQUATION

  • Xu, Ge-Xing;Li, Chun-Hua;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Numerical solutions of the Rosenau-Burgers equation based on the cubic B-spline finite element method are introduced. The backward Euler method is used for discretization in time, and the obtained nonlinear algebraic system is changed to a linear system by the Newton's method. We show that those methods are unconditionally stable. Two test problems are studied to demonstrate the accuracy of the proposed method. The computational results indicate that numerical solutions are in good agreement with exact solutions.

COLLOCATION METHOD USING QUARTIC B-SPLINE FOR NUMERICAL SOLUTION OF THE MODIFIED EQUAL WIDTH WAVE EQUATION

  • Islam, Siraj-Ul;Haq, Fazal-I;Tirmizi, Ikram A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.611-624
    • /
    • 2010
  • A Numerical scheme based on collocation method using quartic B-spline functions is designed for the numerical solution of one-dimensional modified equal width wave (MEW) wave equation. Using Von-Neumann approach the scheme is shown to be unconditionally stable. Performance of the method is validated through test problems including single wave, interaction of two waves and use of Maxwellian initial condition. Using error norms $L_2$ and $L_{\infty}$ and conservative properties of mass, momentum and energy, accuracy and efficiency of the suggested method is established through comparison with the existing numerical techniques.

Transient Linear Elastodynamic Analysis by the Finite Element Method (유한요소법을 이용한 과도 선형 동탄성 해석)

  • Hwang, Eun-Ha;Oh, Guen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • A new finite element equation is derived by applying quadratic and cubic time integration scheme to the variational formulation in time-integral for the analysis of the transient elastodynamic problems to increase the numerical accuracy and stability. Emphasis is focused on methodology for cubic time integration scheme procedure which are never presented before. In this semidiscrete approximations of the field variables, the time axis is divided equally and quadratic and cubic time variation is assumed in those intervals, and space is approximated by the usual finite element discretization technique. It is found that unconditionally stable numerical results are obtained in case of the cubic time variation. Some numerical examples are given to show the versatility of the presented formulation.

  • PDF