DOI QR코드

DOI QR Code

CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE ROSENAU-BURGERS EQUATION

  • Xu, Ge-Xing (Department of Mathematics, Yanbian University) ;
  • Li, Chun-Hua (Department of Mathematics, Yanbian University) ;
  • Piao, Guang-Ri (Department of Mathematics, Yanbian University)
  • Received : 2016.12.06
  • Accepted : 2016.12.14
  • Published : 2017.01.31

Abstract

Numerical solutions of the Rosenau-Burgers equation based on the cubic B-spline finite element method are introduced. The backward Euler method is used for discretization in time, and the obtained nonlinear algebraic system is changed to a linear system by the Newton's method. We show that those methods are unconditionally stable. Two test problems are studied to demonstrate the accuracy of the proposed method. The computational results indicate that numerical solutions are in good agreement with exact solutions.

Keywords

References

  1. S.K. Chung, Finite difference approximate solutions for the Rosenau equation, Appl. Anal. 69 (1.2) (1998) 149-156. https://doi.org/10.1080/00036819808840652
  2. S.K. Chung, A.K. Pani, Numerical methods for the Rosenau equation, Appl. Anal. 77 (2001) 351-369. https://doi.org/10.1080/00036810108840914
  3. B. Hu, Y.C. Xu, J.S. Hu, Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation, Appl. Math. Comput. 204 (2008) 311-316.
  4. J.S. Hu, B. Hu, Y.C. Xu, Average implicit linear difference scheme for generalized Rosenau-Burgers equation, Appl. Math. Comput. 217 (2011) 7557-7563.
  5. Y.D. Kim, H.Y. Lee, The convergence of finite element Galerkin solution for the Rosenau equation, Korean J. Comput. Appl. Math. 5 (1998) 171-180.
  6. L. Liu, M. Mei, A better asymptotic profile of Rosenau-Burgers equation, Appl. Math. Comput. 131 (2002) 147-170.
  7. L. Liu, M. Mei, Y.S. Wong, Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary, Nonlinear Anal. 67 (2007) 2527-2539. https://doi.org/10.1016/j.na.2006.08.047
  8. S.A. Manickam, A.K. Pani, S.K. Chung, A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation, Numer. Meth. Partial Diff. Eq. 14 (1998) 695-716. https://doi.org/10.1002/(SICI)1098-2426(199811)14:6<695::AID-NUM1>3.0.CO;2-L
  9. M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (I), Appl. Anal. 63 (1996) 315-330. https://doi.org/10.1080/00036819608840511
  10. M. Mei, Long-time behavior of solution for Rosenau-Burgers equation (II), Appl. Anal. 68 (1998) 333-356. https://doi.org/10.1080/00036819808840635
  11. X.T. Pan, L.M. Zhang, A new finite difference scheme for the Rosenau-Burgers equation, Appl. Math. Comput. 218 (2012) 8917-8924.
  12. M.A. Park, On the Rosenau equation, Math. Appl. Comput. 9 (1990) 145-152
  13. P.M. Prenter, Splines and variational methods, John Wiley and Sons, New York, 1975.
  14. P. Rosenau, A quasi-continuous description of a nonlinear transmission line, Phys. Scripta 34 (1986) 827-829. https://doi.org/10.1088/0031-8949/34/6B/020
  15. P. Rosenau, Dynamics of dense discrete systems, Progr. Theor. Phys. 79 (1988) 1028-1042. https://doi.org/10.1143/PTP.79.1028
  16. A.A. Soliman, A Galerkin solution for Burgers equation using Cubic B-spline finite elements. Abstr. Appl. Anal. 2012 (2012). Hindawi Publishing Corporation.
  17. G.Y. Xue, L.M. Zhang, A new finite difference scheme for generalized Roseau-Burgers equation. Appl. Math. Comput. 222 (2013) 490-496.