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CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE

ROSENAU-BURGERS EQUATION

Ge-Xing Xu, Chun-Hua Li, and Guang-Ri Piao∗

Abstract. Numerical solutions of the Rosenau-Burgers equation based

on the cubic B-spline finite element method are introduced. The back-

ward Euler method is used for discretization in time, and the obtained
nonlinear algebraic system is changed to a linear system by the Newton’s

method. We show that those methods are unconditionally stable. Two

test problems are studied to demonstrate the accuracy of the proposed
method. The computational results indicate that numerical solutions are

in good agreement with exact solutions.

1. Introduction

Standard Lagrangian finite element basis functions offer only simple C0-
continuity, therefore they cannot be used for the spatial discretization of higher-
order partial differential equations (e.g., the equation involving third-order or
forth-order differential operators with regard to spatial variables). The B-spline
basis function can, however, achieve C1-continuity globally and such basis func-
tions are often used to solve higher-order partial differential equations.

In study of dynamics of dense discrete systems, the cases of wave-wave and
wave-wall interactions cannot be described by the well-known KDV equation.
To overcome this shortcoming of the KDV equation, Rosenau [14, 15] proposed
the following Rosenau equation

ut + uxxxxt + γux + uux = f, x ∈ Ω, t ∈ [0, T ], (1)

where Ω = [0, L], γ is a constant, and f is a forcing term. The existence and
uniqueness of the solution to (1) were proved in [12], but it is still difficult
to find the analytical solution to (1). For this reason, many works have been
done on the numerical methods for solving (1)(see e.g., [1, 2, 5, 8] and also the
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references therein). On the other hand, with a further consideration about a
nonlinear wave, a viscous term −νuxx needs to be included, and hence

ut + uxxxxt − νuxx + γux + uux = f, (2)

with ν > 0. This equation is usually called the Rosenau-Burgers equation,
because its dissipative effect is the same as the Burgers’ equation. The great
number of works have been devoted to the Cauchy problem of the Rosenau-
Burgers equation (see e.g., [6, 7, 9, 10]). Recently, the numerical solutions
to an initial boundary value problem of the Rosenau-Burgers equation have
been studied using finite difference schemes (see e.g., [3, 4, 11, 17] and also the
references therein). In this paper, we suggest a cubic B-spline Galerkin finite
element method for solving the Rosenau-Burgers equation (2) with boundary
conditions

u(0, t) = u(L, t) = 0, ux(0, t) = ux(L, t) = 0, t ∈ [0, T ] (3)

and an initial condition

u(x, 0) = u0(x), x ∈ [0, L]. (4)

In this paper, we employ the Method of Manufactured Solutions(MMS) to
ensure that the code produces accurate results and the approximations gener-
ated converge to a known solution. The MMS allows us to evaluate the error
produced by numerical discretizations. The method develops exact solutions
that are designed to test interactions in code and thereby verify the code.

The rest of this paper is organized as follows. In Section 2, we describe
the B-spline finite element approximation of a solution to the Rosenau-Burgers
equation. We analyze the stability of the proposed scheme in Section 3, and
then present some numerical examples and their results in Section 4.

2. B-Spline Finite Element Approximation

Consider the Rosenau-Burgers equation with boundary conditions and an
initial condition. We use a variational formulation to help to define a finite
element method to approximate (1). A variational formulation of the problem
(1) is as following: find u ∈ L2(0, T ;H2

0 (Ω)) such that

∫
Ω

utvdx+

∫
Ω

uxxtv
′′dx+ ν

∫
Ω

uxv
′dx+ γ

∫
Ω

uxvdx

+

∫
Ω

uuxvdx =

∫
Ω

fvdx for all v ∈ H2
0 (Ω),

u(0, x) = u0(x) in Ω,

(5)

where H2
0 (Ω) = {w ∈ H2(Ω) : w(0) = w(L) = 0, wx(0) = wx(L) = 0} and

H2(Ω) = {w ∈ L2(Ω) : vx ∈ L2(Ω), vxx ∈ L2(Ω)}. We write the first spatial

derivative as “ d
dx =′ ” and the second spatial derivative as “ d2

dx2 =′′ ”.
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A typical finite element approximation of (2) is defined as follows: we first
choose conforming finite element subspaces V h ⊂ H2(Ω) and then define V h

0 =
V h ∩H2

0 (Ω). One then seeks uh(t, ·) ∈ V h
0 such that

∫
Ω

uht v
hdx+

∫
Ω

uhxxt(v
h)′′dx+ ν

∫
Ω

uhx(vh)′dx+ γ

∫
Ω

uhxv
hdx

+

∫
Ω

uhuhxv
hdx =

∫
Ω

fvhdx for all vh ∈ V h
0 (Ω),

uh(0, x) = uh0 (x) in Ω,

(6)

where uh0 (x) ∈ V h
0 is an approximation, e.g., a projection, of u0(x).

Let the interval Ω = [0, L] be divided into N finite elements with an equal
length h and xi denote the knots such that 0 = x0 < x1 < · · · < xN = L. The
set of splines {B−1, B0, B1 · · · , BN , BN+1} forms a basis for functions defined
on Ω. Cubic B-splines Bi(x) with the required properties are defined by [13]

Bi(x) =
1

h3



(x− xi−2)3, x ∈ [xi−2, xi−1),

h3 + 3h2(x− xi−1) + 3h(x− xi−1)2−
3(x− xi−1)3, x ∈ [xi−1, xi),

h3 + 3h2(x− xi+1) + 3h(x− xi+1)2+

3(x− xi+1)3, x ∈ [xi, xi+1),

(xi+2 − x)3, x ∈ [xi+1, xi+2),

0, otherwise,

(7)

where h = xi+1 − xi and i =,−1, 0, · · · , N,N + 1.
Each cubic B-spline covers four elements, or equivalently each element is

covered by four cubic B-splines. The values of Bi(x) and their derivatives can
be tabulated as in Table 1.

Table 1: Values of cubic B-splines and its derivatives at knots

x xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0

B
′

i(x) 0 3/h 0 −3/h 0

B
′′

i (x) 0 6/h2 −12/h2 6/h2 0

Our numerical treatment for solving Equation (2) by the cubic B-spline fi-
nite elements with the backward Euler-Newton’s methods as a time marching
method finds an approximate solution uh(x, t) in the form

uh(x, t) =

N+1∑
i=−1

αi(t)Bi(x), (8)
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where αi(t) are unknown time-dependent quantities to be determined from (6).
Using cubic B-spline functions at (7) and an approximate function at (8), the

approximate values of uh(x, t) and the first and second derivatives of uh(x, t)
at the knots (or nodes) are determined in terms of the time parameters αi as
follows. For the sake of simplicity, we assume ui = uh(xi, t), then

ui = αi−1 + 4αi + αi+1,

u′i = 3(αi+1 − αi−1)/h,

u′′i = 6(αi−1 − 2αi + αi+1)/h2.

(9)

From (9) and the boundary conditions (3), we obtain{
α−1 = α1, α0 = −α1/2,

αN+1 = αN−1, αN = −αN−1/2.
(10)

Using (10) in (8), we have

uh(x, t) =

N−1∑
i=1

αi(t)B̃i(x), (11)

where 
B̃1(x) = [2B−1(x)−B0(x) + 2B1(x)]/2,

B̃i(x) = Bi(x), i = 2, · · · , N − 2,

B̃N−1(x) = [2BN−1(x)−BN (x) + 2BN+1(x)]/2.

A differential equation discretized by the finite element method is not ex-
pressed in terms of the nodal parameters ui, u

′
i but the element parameters αi.

Thus, we shall not determine the nodal values directly as the case of usual finite
element formulations, however they can always be recovered by (9).

According to the Galerkin method, the test function vh(x) in (6) is chosen

to be vhi (x) = B̃i(x)(i = 1, 2, · · · , N − 1). Substituting (11) into (6), we obtain



N−1∑
i=1

(∫
Ω

B̃iB̃jdx

)
dαi(t)

dt
+

N−1∑
i=1

(∫
Ω

B̃
′′

i B̃
′′

j dx

)
dαi(t)

dt

+ ν

N−1∑
i=1

(∫
Ω

B̃
′

iB̃
′

jdx

)
αi(t) + γ

N−1∑
i=1

(∫
Ω

B̃
′

iB̃jdx

)
αi(t)

+

N−1∑
i=1

N−1∑
k=1

(∫
Ω

B̃iB̃
′

kB̃jdx

)
αi(t)αk(t) =

∫
Ω

fB̃jdx,

N−1∑
i=1

(∫
Ω

B̃iB̃jdx

)
αi(0) =

∫
Ω

u0(x)B̃jdx, j = 1, 2, · · · , N − 1,
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which can be written in matrix form as (M + D)
dα

dt
+ (νS + γC)α+ αTNα = f ,

Mα0 = u0,
(12)

where α = (α1, α2, · · · , αN−1)T and α0 = (α0
1, α

0
2, · · · , α0

N−1)T . Elements (or
components) of the (N − 1)× (N − 1) matrices M,D,S,C, the (N − 1)× (N −
1)× (N − 1) tensor N, and vectors f and u0 are given by

Mij =

∫
Ω

B̃iB̃jdx, Dij =

∫
Ω

B̃
′′

i B̃
′′

j dx,Sij =

∫
Ω

B̃
′

iB̃
′

jdx,

Cij =

∫
Ω

B̃
′

iB̃jdx, Nijk =

∫
Ω

B̃iB̃
′

kB̃jdx, fj =

∫
Ω

fB̃jdx,

u0
j =

∫
Ω

u0(x)B̃jdx, i, j, k = 1, 2, · · · , N − 1.

The system of nonlinear ordinary differential equations (12) consists of N − 1
equations and N − 1 unknowns. An associated (N − 1)× (N − 1) matrix G is
given by

Gij =

N−1∑
k=1

Nijkαk,

which depends on the parameters α and will be used in the following theoretical
discussions.

We can determine the matrices M,D,S,C, and G from (7) algebraically,
which have a septadiagonal form. This implies that the general row for each
matrix has the following form:

M : (h/140)(1, 120, 1191, 2416, 1191, 120, 1),

D : (1/h3)(6, 0,−54, 96,−54, 0, 6)

S : (−1/10h)(3, 72, 45,−240, 45, 72, 3)

C : (1/100)(5, 280, 1225, 0,−1225,−280,−5)

G : (1/840)(−(5, 108, 129, 10, 0, 0, 0)α,−(21, 1944, 8130, 3888, 129,

0, 0)α,−(−21, 0, 17841, 35682, 8130, 108, 0)α, (5, 1944, 17841, 0,

− 17841,−1944,−5)α, (0, 108, 8130, 35682, 17841, 0,−21)α,

(0, 0, 129, 3888, 8130, 1944, 21)α, (0, 0, 0, 10, 129, 108, 5)α),

(13)

where α = (αi−3, αi−2, αi−1, αi, αi+1, αi+2, αi+3) for the ith row. The matrices
M,D, and S are symmetric and the matrix C is skew symmetric. The matrix G
has a relatively more complex structure.

As mentioned before, we solve the system (12) by using the following Euler
and Newton’s methods specifically.
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(1) The interval [0, T ] is divided into M subintervals with length 4t = T/M ,
where T is a total time and M is chosen as a positive integer.

(2) Suppose αn are parameters at time tn = n4t, then according to the
backward Euler method, (12) can be written as

J (αn) = (M + D +4tνS +4tγC)αn +4tGαn

− (M + D)αn−1 −4tfn = 0, n = 1, 2, · · · ,M,
(14)

where fn is a given vector. The matrices M,D,S, and C are independent
of time, hence they will remain constants throughout the calculations.
While the matrix G is dependent on time, therefore it must be recalcu-
lated at each time step. For the sake of convenience, the function J is
introduced.

(3) The Newton’s method is employed to linearize the nonlinear algebraic
system (14). We observe that

J ′(αn,l−1)(αn,l − αn,l−1) = −J (αn,l−1), (15)

where the derivative of function J is given by

J ′(·) = M + D +4tνS +4tγC +4tG̃(·),

and the index l is an inner iteration number at each time step n. The
matrix G̃ is a derivative of nonlinear term (αn)TNαn(= Gαn) with re-
spect to αn.

The time evolution of the approximate solution uh(x, t) is determined by the
time evolution of the vector αn. This is found by repeatedly solving the system
(15), once the initial vector α0 = M−1u0 has been computed from the initial
conditions. The concrete solving process at one time step [tn−1, tn] is as follows:

(1) When l = 1, for the initial step of the inner iteration, set αn,0 ← αn−1,
and calculate αn,1 from (15).

(2) When the other l = 2, 3, · · · , compute αn,l by using (15).
(3) If ‖αn,l − αn,l−1‖ < tolerence, quit; otherwise, go back to Step 2.

It is not difficult to find that the backward Euler method is applied to time
discretization process, but the Newton method is used only for linearization of
the nonlinear algebraic equation (14) or update the α included in the G within
each time step. Thus, we only use the formula (14) rather than employing (15)
in the following stability analysis.

3. The Stability Analysis

An investigation into stability of the numerical scheme (14) is based on the
Von Neumann theory. We define the growth factor of a typical Fourier mode as

αn
m = α̂neimkh, (16)
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where k is a mode number and h is an element size, which is required for a
linearization of the numerical scheme (14).

In this linearization, we assume that the quantity u in the nonlinear term
uux is a local constant. This is equivalent to assuming that the corresponding
values of αj are also constant and equal to d.

The stability of time discretization for linear evolution equations can be ex-
pressed in terms of stability for the case as the right-hand side and boundary
data are zero. Therefore, we replace (14) with the following system

(M + D +4tνS +4tγC +4tG)αn = (M + D)αn−1, (17)

and then make the stability analysis.
A linearized recurrence relationship corresponding to (17) is then given by

k1α
n
j−3 + k2α

n
j−2 + k3α

n
j−1 + k4α

n
j + k5α

n
j+1 + k6α

n
j+2 + k7α

n
j+3 =

l1α
n−1
j−3 + l2α

n−1
j−2 + l3α

n−1
j−1 + l4α

n−1
j + l3α

n−1
j+1 + l2α

n−1
j+2 + l1α

n−1
j+3 ,

(18)

where
k1 = l1 − r1 + r2 − r3, k2 = l2 − 24r1 + 56r2 − 56r3,

k3 = l3 − 15r1 + 245r2 − 245r3, k4 = l4 + 80r1,

k5 = l3 − 15r1 − 245r2 + 245r3, k6 = l2 − 24r1 − 56r2 + 56r3,

k7 = l1 − r1 − r2 + r3,

l1 =
h

140
+

6

h3
, l2 =

6h

7
, l3 =

1191h

140
− 54

h3
, l4 =

604h

35
+

96

h3
,

r1 =
3ν4t
10h

, r2 =
γ4t
20

, r3 =
3d4t

10
.

Substituting (16) into (18), we obtain

(a+ b+ ic)α̂n = aα̂n−1, (19)

where
i =
√
−1,

a = l1cos3kh+ l2cos2kh+ l3coskh+
l4
2
,

b = r1(40− cos3kh− 24cos2kh− 15coskh),

c = (r3 − r2)(sin3kh+ 56sin2kh+ 245sinkh).

(20)

Let us write α̂n = gα̂n−1 and substitute it into (18), which gives

g =
a

a+ b+ ic
,

where g is the growth factor for the mode. Since a, b are greater than zero, the
modulus of the growth factor is

|g| =
√
gḡ =

√
a2

(a+ b)2 + c2
< 1.

Therefore, the linearized scheme is unconditionally stable.
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4. Computational Experiments and Conclusions

We consider numerical solutions of the Rosenau-Burgers equation for two
test problems now. To measure the accuracy of the numerical algorithm, we
compute the difference between analytic solutions and numerical solutions at
each mesh points on specified time steps. We also compute the discrete L2−
and L∞− error norms in Example 1. These error norms are defined as

L2 = ‖ue − uh‖2 = [h
N∑
j=0

(uej − uhj )2]
1
2 ,

L∞ = ‖ue − uh‖∞ = max
j
|uej − uhj |,

where h is a spatial step size, ue is an analytic solution, and uh is an numerical
solution.

In order to show the accuracy of the present method more clearly, we con-
struct the exact solution to the first example.

Example 1. When the parameters ν = 1, γ = 1, we consider the problem
with the boundary conditions (3) and exact solution given by

u(x, t) = 4e−tx(1− x)sin(πx). (21)

The initial condition is given by

u0(x) = 4x(1− x)sin(πx).

This meets the boundary conditions and the associated MMS forcing term is

f(x, t) = 4x(1− x)sin(πx).

When implementing a numerical computation, we take L = 1, and a forcing
term f is chosen by substituting (21) into (2). Figure 1 shows us that the
behavior of the numerical solution from t = 0 to 4. The numerical and exact
solutions are given in Table 2. The results of error norms given in Tables 3, 4,
5, and 6 present the changes of two error norms L2 and L∞ at different times
when distinct spatial steps and time steps are taken. Table 4 shows us a good
accuracy of the numerical solution for small time step and appropriate spatial
step. In particular, we observe that the error and time step rates are constant
in Tables 4, 5, and 6. The characteristics are consistent with those computed
by using Euler method. From Tables 7 and 8, we find that the error obtained
by the present algorithm is smaller than the error computed by Crank-Nicolson
difference method [16].

To illustrate the effectiveness of the present method nicely, we study more
general cases in the second example.
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Figure 1. The behavior of the numerical solution with h =
1/64, 4t = 0.001 at different times for Example 1.

Example 2. In the equation (2), we set the forcing term f be zero for the
following several cases.

(i) Consider the case with ν = 0.01, γ = 80,4t = 0.01 and initial condi-

tion u0(x) = 4x(1−x)
1+exp(2x2) , at different times t = 3 and 7. The numerical

solutions are given in Table 9, with distinct spatial step sizes h.
(ii) Figures 2, 3, and 4 show the behavior of the numerical solutions for

various constant coefficients ν and γ, diverse parameters h and 4t, dif-
ferent times, and distinct initial conditions u0(x) = 4x(x − 1)sin(πx),

u0(x) = 4x(1− x)sin(2πx) and u0(x) = 4x(1−x)
1+exp(0.25x2) respectively.

We see that the algorithm proposed here by using Galerkin’s method with
cubic spline shape functions gives results in a good accuracy. The L2− and
L∞−error norms keep satisfactorily small during the simulations. A linear sta-
bility analysis based on the Von Neumann theory shows that the numerical
scheme is unconditionally stable. We conclude that a finite element approach
based on Galerkin’s method with cubic spline shape functions is eminently suit-
able for the computation of solutions to the Rosenau-Burgers equation. We
think that this approach is a proper method for other applications where the
continuity of derivatives is essential.
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Table 2: Comparison between exact solution and numerical solution
at different times with h = 1/64 and 4t = 0.001 for Example 1.

x t = 0.5 t = 0.5 t = 2 t = 2 t = 4 t = 4
Exact Numer Exact Numer Exact Numer

0.125 0.10154 0.10157 0.02266 0.02273 0.00307 0.00314
0.25 0.32166 0.32176 0.07177 0.07199 0.00971 0.00995
0.375 0.52533 0.52550 0.11722 0.11757 0.01586 0.01624
0.5 0.60653 0.60671 0.13534 0.13574 0.01832 0.01875
0.625 0.52533 0.52550 0.11722 0.11756 0.01586 0.01624
0.75 0.32166 0.32176 0.07177 0.07198 0.00971 0.00994
0.875 0.10154 0.10157 0.02266 0.02272 0.00307 0.00313

Table 3: Error norms at different times for h = 1/10 and 4t = 0.05
for Example 1.

t = 2 t = 2.5 t = 3 t = 4 t = 5
L2 × 102 1.123 1.176 1.208 1.214 1.217
L∞ × 102 1.824 1.915 1.962 1.986 1.994

Table 4: Error norms at different times for h = 1/32 and 4t = 0.001
for Example 1.

t = 1 t = 1.5 t = 2 t = 3 t = 4
L2 × 104 1.344 1.636 1.803 1.938 2.716
L∞ × 104 2.264 2.955 3.038 3.266 3.296

Table 5: Error norms at different times for h = 1/32 and 4t = 0.01
for Example 1.

t = 1 t = 1.5 t = 2 t = 3 t = 5
L2 × 103 1.879 2.289 2.524 2.716 2.710
L∞ × 103 3.021 3.681 4.058 4.365 4.353

Table 6: Error norms at different times for h = 1/32 and 4t = 0.1
for Example 1.

t = 1 t = 1.5 t = 2 t = 3 t = 5
L2 × 102 1.905 2.321 2.559 2.754 2.748
L∞ × 102 3.051 3.717 4.097 4.409 4.397

Table 7: Comparison of error norms L2 × 103 at different times
with h = 1/32 and 4t = 0.01 for Example 1.

t = 1 t = 2 t = 3 t = 4 t = 5
Present 1.878 2.507 2.694 2.722 2.691

C-N scheme 1.879 2.524 2.716 2.743 2.710
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Figure 2. The behavior of the numerical solution with ν =
0.1, γ = 90 and h = 1/64, 4t = 0.01 at different times for
Example 2.

Table 8: Comparison of error norms L∞ × 103 at different times
with h = 1/32 and 4t = 0.01 for Example 1.

t = 1 t = 2 t = 3 t = 4 t = 5
Present 3.021 4.058 4.365 4.407 4.353

C-N scheme 3.131 4.146 4.441 4.481 4.429

Table 9: Comparison of results at different times with ν = 0.01,
γ = 80 and 4t = 0.01 for distinct spatial step size h, Example 2.
x t = 3 t = 3 t = 3 t = 7 t = 7 t = 7

h = 1
16 h = 1

32 h = 1
64 h = 1

16 h = 1
32 h = 1

64

0.125 0.20333 0.20619 0.20669 0.15516 0.15818 0.15870
0.25 0.35005 0.35117 0.35123 0.24840 0.24979 0.24989
0.375 0.44038 0.44082 0.44084 0.35035 0.35115 0.35121
0.5 0.46160 0.46182 0.46184 0.44715 0.44775 0.44782
0.625 0.40209 0.40227 0.40228 0.47387 0.47437 0.47443
0.75 0.27158 0.27186 0.27187 0.37315 0.37363 0.37367
0.875 0.11228 0.11295 0.11306 0.16464 0.16535 0.16548
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Figure 3. The behavior of the numerical solution with ν =
0.0001, γ = 100 and h = 1/32, 4t = 0.1 at different times for
Example 2.
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Figure 4. The behavior of the numerical solution with ν =
0.01, γ = 80 and h = 1/64, 4t = 0.01 at different times for
Example 2.
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