J. Appl. Math. & Informatics Vol. 26(2008), No. 1 - 2, pp. 1 - 14
Website: http://www kcam.biz

NUMERICAL SIMULATION OF THE RIESZ FRACTIONAL
DIFFUSION EQUATION WITH A NONLINEAR SOURCE
TERM

H. ZHANG AND F. LIU"

ABSTRACT. In this paper, A Riesz fractional diffusion equation with a non-
linear source term (RFDE-NST) is considered. This equation is commonly
used to model the growth and spreading of biological species. According to
the equivalent of the Riemann-Liouville(R-L) and Griinwald-Letnikov(G-
L) fractional derivative definitions, an implicit difference approximation
(IFDA) for the RFDE-NST is derived. We prove the IFDA is uncondition-
ally stable and convergent. In order to evaluate the efficiency of the IFDA,
a comparison with a fractional method of lines (FMOL) is used. Finally,
two numerical examples are presented to show that the numerical results
are in good agreement with our theoretical analysis.
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1. Introduction and notations

It is well known that the fundamental solution (or Green function) for the

classical diffusion equation
ou 8%y

is provided by the normal or Gaussian probability density functions of a Brown-
ian motion [17,36,38], which describes the motion of small macroscopic particles
in a liquid or a gas which experience unbalanced bombardments due to surround-
ing atoms, and hence reveals the atomistic structure of the medium in which the
motion occurs. But the anomalous diffusion (subdiffusion or superdiffusion)
phenomena is almost ubiquitous in nature {10,14,19,28,35]. Many academicians
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find that evolution equations containing fractional derivatives can provide suit-
able mathematical models for describing phenomena of anomalous diffusion and
transport dynamics in complex systems [6,9,11,12]. Here we especially refer to
Metzler and Klafter [27] for a comprehensive review.

It is regret that it is difficult to solve the fractional order differential equation
in that the fractional derivative operators are quasi-differential operators with
singularity. Until recently, by various integral transforms, separation of vari-
ables, various finite difference discretization, variational iteration, Adomian de-
composition and finite element methods have proposed to obtain the analysis or
numerical solutions of linear fractional order differential equations [8,15,16,20,22-
26,31,33,37]. But many phenomena in the nature must be simulated by nonlinear
differential equations, such as a hyperchaotic autonomous nonlinear system [1],
large uni-axial deformation behavior of poly-urethane foam [4], the wave prop-
agation of an advantageous gene in a population [2], and so on. To the best of
our knowledge, while the studied of analysis or numerical solutions of nonlinear
fractional differential equations (NFDEs) are relatively limited. Diethelm [5],
Zhang [39] and Bai [3] discussed the existence and uniqueness of solution or
existence of positive solution of NFDEs. The variational iteration and Adomian
decomposition techniques were used to get the approximate or analysis solutions
of NFDEs by many academicians [7,15,18,29,30,32,34], but the above techniques
are only suit to solve nonlinear fractional ordinary differential equations and
nonlinear fractional partial differential equations with initial value or boundary
value conditions, as for the mixed problems, the two techniques are inefficient.
Lin and Liu [21] considered a fractional nonlinear ordinary differential equa-
tion, they got high order convergent discrete schemes. Guy [13]gave the series
form of solution of a class of nonlinear partial differential equations of fractional
order by Lagrange characteristic method. Baeumer, et.al. [2] got numerical so-
lution of the initial problem of nonlinear fractional reaction-diffusion equation
by time discretization and operator splitting. But the numerical approximation
and analysis of the Riesz fractional diffusion equation with a nonlinear source
term (RFDE-NST) have not been studied previously.

In the paper, we consider the numerical simulation of the RFDE-NST:

Ou 0%u
- M Aliia ,t$ y 1< S 2,

5 e + f(z,t,u) a

where A\(> 0) is diffusion coefficient and 8?7]"‘ is a Riesz fractional derivative
operator defined by

1 o N
0*u(z,t) _ _W{“Dm”(x’t) +:Du(z,t)}1<a<2,
Oz|* %u(z, t) I
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and
1 &
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(see [9] or [33]). Solutions to considered fractional diffusion equation is provided

by the a-stable probability density functions [25] of a Lévy motion (28]. The
RFDE-NST is commonly used to model the growth and spreading of biological
species [2], where the classical second derivative diffusion term is replaced by a
Riesz fractional derivative of order less than two. The resulting model captures
the faster spreading rate and power law invasion profiles observed in many ap-
plications and is strongly motivated by a generalised central limit theorem for
random movements with power-law probability tails.

The structure of the paper is as follows. In Section 2, an implicit finite
difference approximation (IFDA) for the RFDE-NST is proposed. The stability
and convergence of the IFDA are discussed in Section 3. A fractional method of
lines for the RFDE-NST is introduced in Section 4. In Section 5, some numerical
examples are given. Theoretical results are in excellent agreement with numerical
testing.

2. An implicit finite difference approximation for the RFDE-NST

In the section, we consider the following REDE-NST:

ou o%u

= < <

o )\alm[a+f(x,t,u), l<a<?2, 0<z<l,0<t<T, (1)
u(0,t) =u(l,t)=0, 0<t<T, (2)
u(z,0) =g(z), O0<z<l|, (3)

where the nonlinear term f(z,¢,u) satisfies a Lipschitz condition about u, i.e.,
3L, st |f(z,t,u) — fz,t,v)| £ Lju — v| for u,v € (—o0,+00).

Let z; = jh(j = 0,1,--- ,N) and t, = k7(k = 0,1,--- ,K), where h = %
and T = % are space and time steps, respectively. Assume that u(z,t) €
C2([0,1] x [0,T]). Using the relationship between the Griinwald-Letnikov de-

rivative and Riemann-Liouville derivative [31], we discrete the Riesz fractional

derivative Bikc% by the shifted Griinwald-Letnikov formulae [26]
oDSu(zi te-1) = oDZu(zi,te) + O(T)
i+1
1
= he Zwyu(fﬂiﬂ—j, tx) + O(h+ 1), 4)
=0

2D u(zs, te-1) = Dfu(zs, te) + O(T) (5)
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1 N—i+1
= E; Z w;'lu(l?i_l_(..j, tk) + O{h + T)s
j=0

. For the left term of

where the coefficients w$ = (-1)/ oo 1) ..,(a i)

equation (1), the following forward difference scheme can be used:

ou(mi, te—1)  ulzs, ) — u(zi, te-1)
ot B T

+ O(7). (6)

Let u¥ be the numerical approximation to u(z;,tx), then we obtain the im-
plicit difference approximation (IFDA) of equations (1)-(3)

u"’ —’U,;-:_l A i+1 N—-i+1
- T * Qh"‘cos“" Zw uz-3+1 + Z wy uz+] 1
§=0
+H(@ite-r,ui ), i=1,2, N~1¢=12,,K, (7)
ug =uky =0,k=0,1,-- K, (8)
uzq:gi—g( i)7z_0a13"')N (9)
Let r = %QL)\—- and taking the boundary value conditions (8) into account,

then the discrete schemes {7)-(9) can be rewritten as

i+1
k-1 k-1
sz ]—Hv‘ + Z w] H—lu =Y +Tf{xi1tk—lvui );

_1_

t=12,--- ,N-1k=1,2-- K, (10)
uw =g; = g(z:),i=0,1,--,N. (11)
Its matrix form is
AU =U* ' 4 rF* Y k=1,2,---,K, (12)
where the vectors
U* = (uf, g, uyg)T,

T
FFl= (f(xlatk-lsux Y, f(®2, tke1,us™Y), - :f(xN-i,tlc-—hu'R__ll))

and the coefficient matrix A = (ai;)(v-1)x(¥-1)

‘—"rw;l_]_*_l, ] <2"1,
—rwf+ws), j=ix1
1~ 2rwg, j=1

TWi i1 j>i4+1

(13)

Q5 =

3. Stability and convergence of the IFDA for the RFDE-NST
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According to the literatures [26], it gets

Proposition 1. The coefficients w§ (j =0,1,--) satisfy
Dwg=1 wf=-a<0,wf>0,j=23"

(=] 3
() Y wr=0, L wk<0,n=12---
J=0 j=0

Assume the initial data has error €). Let §? = g0 +%(i=1,--- ,N—1),u* and
@f(i=1,--+,N —1) be the numerical solutions of equation (10) corresponding
for the initial data g? and §? (i =1,--- , N — 1), respectively, then e¥ = u¥ — *
satisfies

i+1 N-1
k k k
g —r Zw?-jﬂgj + Wi i41E;
=1 j=i-1
= Ef—l + 'rf(wz-,tk_l,uf_l) - Tf(a:,',tk_l,ﬂf—l). (14)
Let eF = (¥, ek ... |k _ )¢, Then we obtain

Theorem 1. The implicit finite difference scheme (10)-(11) is stable uncondi-
tionally.

—-TA
2h*cos %"
to the proposition 1, we have a;; < 0,(¢,j = 1,--- ,N — 1,i # j), ay > 1(i =

N-=1
e — e A: e — k = l.c =
1,++,N—1)and ng ai; > 1{i=1,2,-++ ,N—1). Let || €° ||oo Jmax, | ef =]

Proof 1t is easy to see r = > 0(1 < o £ 2). Therefore, according

€k | (0 < m < N). Due to (14) and the Lipschitz condition of nonlinear function
f, it gets

N-1
lem 1< D ailen|

j=1
m+1 N-1
=(-2rw)eb [ —rd 3 Wit Y ik
j=Lj#m j=m—1,j#m
< (1-2rwf) | &, |
m+1 N-1
- Z Whjir | € |+ Z Wmpr | €5 |
j=l,j#m j=m-1,j#m
m+1 N-1

k k
<(-2rwf)eh [ - Y whojpef+ Z Wi m41€5
j=lLij#m j=m—1,j#m
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m+1 N-1
A A SR I T P
i=Lj#m j=m—1,j#m

= Isfn—l + T[f(.’Em, tk—l,ufn_l) - f(xmvtk—l’afn—l)]l

< e+ LR
and then

le¥ oo < (A+7L) [ €7 oo (14 7L)? || €57 [|oo
< S AHTDF € oS €T | €0 oo

So the implicit difference scheme (10)-(11) is stable unconditionally. a

We now consider the convergence of the IFDA (10)-(11), we also have

Theorem 2. The IFDA (10)-(11) is convergent unconditionally.

Proof Assume that u(z;, tx) is the exact solution of the RFDE-NST (1)-(3) and
u¥ is the numerical solution of the IFDA (10)-(11). Then according to formulae
(4)-(6), €F = uF —u(z;,tx) (i=1,--- ,N=1;k=1, -+ K) satisfy

i+1
e . Zw_]He + Z w] hLle

Jj=i-1
= k 1+Tf(:v,~,tk 1, U k 1)—Tf(:l:i,tk 1,U (:L‘i,tk 1))+T O( )+T O(h+T)
’° Vb 7f (@i tee, b YY) — 7f (@ tee1, w(is k1)) + 7 O(R + 7)

Moreover, we suppose that ef = ek =0(k=1,--- ,K), ¢ =0(i=0,1,--- ,N)
and ||e¥||loc = |ek,|. Then

m+1 N-1
k
leh | <(1=2rwf) |ep | —r Z Win—j41 + Z - S
.7_1)]#”" j=m—11j#m
< (1-2rwf) | ep |
m+1 N-1
k
-r Z w —j+1 |€ 1 + Z w?—m-{-l | ej I
J=1l,j#m J=m—1,j#m
m+1 N-1
<1 —2rw®)ek —r Z WS _J+1e + Z ;?‘_mﬂef
j=1,j#m j=m-1,j#m

= |5 + 11f(@m, te-1, ul?) = f(@m thee1, w(Tm, th—1)] + TO(R + 7))
<|ekH 4 Ll + - Clh+ 1),



Numerical simulation of the Riesz fractional diffusion equation 7

where C is a positive constant. Therefore,

lello < (1+7L) [ "7 Jloo +7- Clh+17)
S e
< A+7D)X || €0 oo +r(1 + L)X IC(R A T) + -+ TC(R 4+ T)
< A+7L)* || €0 oo +KT(1+ TLYEIC(R + 1)
< exp(LT) || €° ||oo +exp(LT)TC(h+ 7)
= CTe!(h+ 1),
and then
lim | ¥ |lo= 0.
7,h—0
This completes the proof. ]

4, Fractional method of lines

It is very difficult to obtain the exact solution of the nonlinear partial differ-
ential equations. In order to demonstrate the efficiency of the IFDA, a fractional
method of lines (FMoL) for RFDE-NST also is presented. The FMoL was firstly
introduced by Liu et al. [22]-[23] to solve the space fractional Fokker-Planck
equation and simulate the Lévy motion with a-stable densities successfully. The
FMoL for the RFDE-NST can be written as the following form:

(

du(z;,t) Y il . N-it1 .
dt 2h%cosE w; u(i-j1,t) + Z W (Titj-1,t)
< +f($i,t,u(mi,t))7 izl’z""’N“1,0<tST,
u(zo, t) = u(zN,t) =0,0<t < T,
| 4(zi,0) = g(z:),6= 0,1, ,N.

5. Numerical examples

In this section, two numerical examples are given to demonstrate our theo-
retical analysis.

Example 1. Consider the following NFR-SubDE:
ou _ \ 0%u
ot~ Ozl
u(0,t) = u(mt)=0,0<t < T,
u(z,0) =sinz,0 < z <,

+siny, 1<a<2,0<z<m0<t<T
(15)

to show the preciseness of the above theoretic analysis.

Table 1 lists the numerical results using the IFDA (10)-(11) with o = 1.8,
t=1.0, A =~ 7, A = 0.1 and the last column data are the numerical results by
FMoL with o = 1.8, t = 1.0, h = 7 = 0.016, A = 0.1. From Table 1, it can
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TABLE 1. Comparison of the results of IFDA (10)-(11) with
different space and time step h = 7 and the FMoL whena = 1.8,

t=1.0,A=0.1

(X10) [h= & ~ 0157 | h= 12 ~ 0.0314 | h = 2 ~ 0.0157 | h = 25 ~ 0.0157

r=0.16(IFDA) | 7=0.03(IFDA) | r=0.016(IFDA) | r=0.016(FMoL)
0.3142 | 0.66664661 0.71766001 0.72323636 0.71312860
0.6283 | 1.18091679 1.24052658 1.24612454 1.24780762
0.9425 | 1.53124465 1.58383641 1.58810777 159121579
1.2566 | 1.72803276 1.77216149 1.77545588 1.77773300
1.5708 | 1.79085073 1.83164748 1.83457607 1.83648052
1.8850 | 1.72803397 1.77217864 1.77552773 1.77783878
2.1991 | 1.53124729 1.58387242 1.58831821 1.59176807
2.5133 | 1.18092060 1.24057971 1.24628205 1.25101528
2.8274 | 0.66665013 0.71771300 0.72338189 0.72768746

be seen that the numerical results using IFDA are in good agreement with the
convergence analysis and close to the results of FMOL.

Furthermore, Figure 1 shows the characters of diffusion system response with
nonlinear source term at different times ¢ with a = 1.8, 7 = 0.01, N = 100,
A = 0.1. Figure 2 shows the characters of diffusion about different diffusion
coefficients A at time t = 1.0 with o = 1.8,7 = 0.01, NV = 100. From Figure 2,
it can be seen that the larger the diffusion coefficient A, the greater the velocity
of diffusion.

Example 2. Considering the following nonlinear reaction diffusion equation

using Fisher’s growth equation and a symmetric (Riesz) fractional diffusion term

of order 1 < o < 2 ([2]):
ou 0%u u
% =Aw+#*u(1—E),
w(0,8) =u(l,t) =0, 0<t<T,
uw(z,0) = f(z), O0<z<l,

where p is the intrinsic growth rate and K is the carrying capacity.

We take A = 0.1, K = 1,1 = 100, and a smooth step-like initial function f(z)
which takes the constant value f = 0.8 around the point £ = 50 and rapidly
decays to 0 away from the point z = 50.

Figure 3 shows that the numerical simulations of the problem (16) using IFDA
(10)-(11)with 1.5 € a < 2.0 at t = 32. The curve shows heavier tails and faster
spreading in the fractional case @ < 2. Figure 4 shows the characters of the
diffusion system response with Fisher’s nonlinear source term at different times
t, which is similar to the result (Figure 3) reported in Baeumer et al. [2]. Figure
5 shows the characters of the diffusion system response with different intrinsic
growth rate p at t = 32 with a = 1.8.

O<z<l, 0<t<T,

(16)
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6. Conclusions

In this paper, numerical simulation of the Riesz fractional diffusion equa-
tion with a nonlinear source term (RFDE-NST) has been described and demon-
strated. The stability and the convergence of the IFDA have also been proved.
Finally, some numerical results of IFDA and FMoL are presented. These numeri-
cal results are given to demonstrate that our IFDA is a computationally efficient
method for REDE-NST. This method and analysis technique can be used to
solve and analyze other kinds of fractional-order partial differential equations
with nonlinear source term.
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FIGURE 4. Comparison of the characters of the RFDE-NST in
Example 2 at different time ¢ with o = 1.8, 4 = 0.25
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Example 2 at different intrinsic growth rate u with o = 1.8,t =
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