• 제목/요약/키워드: trivial rings extension

검색결과 18건 처리시간 0.022초

MININJECTIVE RINGS AND QUASI FROBENIUS RINGS

  • Min, Kang Joo
    • 충청수학회지
    • /
    • 제13권2호
    • /
    • pp.9-17
    • /
    • 2001
  • A ring R is called right mininjective if every isomorphsim between simple right ideals is given by left multiplication by an element of R. In this paper we consider that the necessary and sufficient condition for that Trivial extension of R by V, i.e. T(R; V ) is mininjective. We also study the split null extension R and S by V.

  • PDF

BÉZOUT RINGS AND WEAKLY BÉZOUT RINGS

  • El Alaoui, Haitham
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.843-852
    • /
    • 2022
  • In this paper, we study some properties of Bézout and weakly Bézout rings. Then, we investigate the transfer of these notions to trivial ring extensions and amalgamated algebras along an ideal. Also, in the context of domains we show that the amalgamated is a Bézout ring if and only if it is a weakly Bézout ring. All along the paper, we put the new results to enrich the current literature with new families of examples of non-Bézout weakly Bézout rings.

ALMOST WEAKLY FINITE CONDUCTOR RINGS AND WEAKLY FINITE CONDUCTOR RINGS

  • Choulli, Hanan;Alaoui, Haitham El;Mouanis, Hakima
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.327-335
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost weakly finite conductor if for any two elements a and b in R, there exists a positive integer n such that anR ∩ bnR is finitely generated. In this article, we give some conditions for the trivial ring extensions and the amalgamated algebras to be almost weakly finite conductor rings. We investigate the transfer of these properties to trivial ring extensions and amalgamation of rings. Our results generate examples which enrich the current literature with new families of examples of nonfinite conductor weakly finite conductor rings.

RINGS IN WHICH EVERY IDEAL CONTAINED IN THE SET OF ZERO-DIVISORS IS A D-IDEAL

  • Anebri, Adam;Mahdou, Najib;Mimouni, Abdeslam
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.45-56
    • /
    • 2022
  • In this paper, we introduce and study the class of rings in which every ideal consisting entirely of zero divisors is a d-ideal, considered as a generalization of strongly duo rings. Some results including the characterization of AA-rings are given in the first section. Further, we examine the stability of these rings in localization and study the possible transfer to direct product and trivial ring extension. In addition, we define the class of dE-ideals which allows us to characterize von Neumann regular rings.

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi;Hwankoo Kim;Najib Mahdou
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.953-973
    • /
    • 2024
  • Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

S-COHERENT PROPERTY IN TRIVIAL EXTENSION AND IN AMALGAMATED DUPLICATION

  • Mohamed Chhiti;Salah Eddine Mahdou
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.705-714
    • /
    • 2023
  • Bennis and El Hajoui have defined a (commutative unital) ring R to be S-coherent if each finitely generated ideal of R is a S-finitely presented R-module. Any coherent ring is an S-coherent ring. Several examples of S-coherent rings that are not coherent rings are obtained as byproducts of our study of the transfer of the S-coherent property to trivial ring extensions and amalgamated duplications.

ON NONNIL-m-FORMALLY NOETHERIAN RINGS

  • Abdelamir Dabbabi;Ahmed Maatallah
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.611-622
    • /
    • 2024
  • The purpose of this paper is to introduce a new class of rings containing the class of m-formally Noetherian rings and contained in the class of nonnil-SFT rings introduced and investigated by Benhissi and Dabbabi in 2023 [4]. Let A be a commutative ring with a unit. The ring A is said to be nonnil-m-formally Noetherian, where m ≥ 1 is an integer, if for each increasing sequence of nonnil ideals (In)n≥0 of A the (increasing) sequence (∑i1+⋯+im=nIi1Ii2⋯Iim)n≥0 is stationnary. We investigate the nonnil-m-formally Noetherian variant of some well known theorems on Noetherian and m-formally Noetherian rings. Also we study the transfer of this property to the trivial extension and the amalgamation algebra along an ideal. Among other results, it is shown that A is a nonnil-m-formally Noetherian ring if and only if the m-power of each nonnil radical ideal is finitely generated. Also, we prove that a flat overring of a nonnil-m-formally Noetherian ring is a nonnil-m-formally Noetherian. In addition, several characterizations are given. We establish some other results concerning m-formally Noetherian rings.

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.349-364
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.