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BÉZOUT RINGS AND WEAKLY BÉZOUT RINGS

Haitham El Alaoui

Abstract. In this paper, we study some properties of Bézout and weakly

Bézout rings. Then, we investigate the transfer of these notions to trivial

ring extensions and amalgamated algebras along an ideal. Also, in the
context of domains we show that the amalgamated is a Bézout ring if and

only if it is a weakly Bézout ring. All along the paper, we put the new
results to enrich the current literature with new families of examples of

non-Bézout weakly Bézout rings.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0 and that
all modules are unital. If R is a ring, then U(R) denotes the set of units of
R; Z(R) the set of zero-divisors of R; Reg(R) := R − Z(R) the set of regular
elements of R; and tq(R) = RR−Z(R) the total quotient ring of R. A ring R
is called a total ring of quotients if R = tq(R), that is, every element of R is
invertible or zero-divisor.

A ring R is said to be a Bézout ring if the sum of two principal ideals is again
principal. By induction it follows that every finitely generated ideal is prin-
cipal. The class of Bézout rings includes strictly the classes of Hermite rings,
elementary divisor rings, and valuation rings. For more details, see [14,20,21].
During the past three decades, several notions grew out of Bézout (e.g., Almost
Bézout property, φ-Bézout, and weakly Bézout (i.e., every finitely generated
ideal of R contained in a principal proper ideal of R is itself principal)). See
for instance [3, 5, 6].

For a ring A and an A-module E, the trivial ring extension of A by E is the
ring R := AnE, where the underlying group is A×E and the multiplication is
defined by (a, e)(b, f) = (ab, af + be). The ring R is also called the idealization
of E over A and is denoted by A(+)E. This construction was first introduced,
in 1962, by Nagata [23] in order to facilitate interaction between rings and their
modules and also to provide various families of examples of commutative rings
containing zero-divisors. The literature abounds of papers on trivial extensions
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dealing with the transfer of ring-theoretic notions in various settings of these
constructions (see, for instance, [1,15,16,18]). For more details on commutative
trivial extensions (or idealizations), we refer the reader to Glaz’s and Huckaba’s
respective books [15, 16], and also D. D. Anderson and M. Winders relatively
recent and comprehensive survey paper [4].

The amalgamation algebras along an ideal, introduced and studied by
D’Anna, Finocchiaro and Fontana in [8–10] and defined as follows:

Let A and B be two rings, J an ideal of B and let f : A → B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:

A ./f J = {(a, f(a) + j) : a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f . In particular,
they have studied amalgamations in the frame of pullbacks which allowed them
to establish numerous (prime) ideal and ring-theoretic basic properties for this
new construction. This construction is a generalization of the amalgamated
duplication of a ring along an ideal (introduced and studied by D’Anna and
Fontana in [11, 12]). See for instance [2, 8–10, 19, 22]. Moreover, other clas-
sical constructions (such as the A + XB[X], A + XB[[X]], and the D + M
constructions) can be studied as particular cases of the amalgamation [8, Ex-
amples 2.5 and 2.6].

In [18], the authors studied the transfer of the Bézout property to the trivial
ring extensions of any domain by its quotient field. In [17], the author es-
tablished necessary and sufficient conditions for classical D+M constructions
to inherit Bézout property. In [13], the authors examined the transfer of the
weakly Bézout proprety to the trivial ring extensions, and after observing that
each weakly Bézout ring contains a non-invertible regular element (that is, is
not a total ring of quotients) is a Bézout ring. The purpose of this paper is to
study the possible transfer of the Bézout properties and weakly Bézout rings
to trivial ring extension and amalgamated algebras along an ideal. Also, in
the context of domains we show that the amalgamated is a Bézout ring if and
only if it is a weakly Bézout ring, and we give new results to enrich the current
literature with new families of examples of non-Bézout weakly Bézout rings.

2. Main results

The first theorem of this paper develops a result of the transfer of weakly
Bézout property to trivial ring extensions. Recall that a module over a ring is
divisible if each element of the module is divisible by every regular element of
the ring. Recall also that a ring R is weakly Bézout if every finitely generated
ideal of R contained in a principal proper ideal of R is itself principal.

Theorem 2.1. Let A be a domain, E a nonzero divisible A-module, and R :=
An E. Then, the following statements hold:

(1) If R is weakly Bézout, then so is A.
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(2) Assume that A ⊆ E is an extension of domains. Then, R is a weakly
Bézout ring if and only if A is a weakly Bézout ring and E = qf(A).

Proof. (1) Let I :=
∑i=n

i=1 Aai for some positive integer n and J := Ab be two
proper ideals of A such that I ⊆ J . Then, InE contained in JnE := AbnE =
R(b, 0), by [1, Lemma 2.3]. So, I n E = R(a, e) for some element (a, e) of R
since R is a weakly Bézout ring. Thus I nE = AanE by [1, Lemma 2.3] and
hence A is a weakly Bézout ring.

(2) If R is a weakly Bézout ring, then A is a weakly Bézout ring by (1).
It remains to prove that qf(A) ⊆ E. Let a be a nonzero element of A, set
I := (a, 0)R + (a, 1)R and J := Aa n E = R(a, 0). It is easily seen that I
contained in J , and so it is principal, that is, there exists an element (c, b) in
A n E such that I = A n E(c, b). Then, there exist (a1, b1), (a2, b2), (a3, b3)
and (a4, b4) in An E such that

(a, 0) = (a1, b1)(c, b) = (a1c, a1b+ cb1),

(a, 1) = (a2, b2)(c, b) = (a2c, a2b+ cb2),

(c, b) = (a3, b3)(a, 0) + (a4, b4)(a, 1).

Then, we obtain the following equations:

(i) a = a1c,
(ii) 0 = a1b+ cb1,

(iii) a = a2c,
(iv) 1 = a2b+ cb2,
(v) c = a3a+ a4a.

Hence, from the first and third equation, we have a1c = a2c. So, 0 6= c
since 0 6= a, and so a1 = a2. Also from the fifth equation, we obtain c =
a(a3 + a4) = αc(a3 + a4). Then, (a3 + a4)α = 1, and so α ∈ U(A). Finally,
from the second and fourth equation, we have 0 = αb+ cb1 and 1 = αb+ cb2.
Thus, 1 = c(b2 − b1) = α−1a(b2 − b1) ∈ aE. Hence, a ∈ U(E). Therefore,
qf(A) ⊆ E. Clearly, qf(A) = E. Deny, dimqf(A)(E) ≥ 2, a contradiction
by [13, Proposition 2.9]. The converse of (2) is an immediate consequence of
[13, Proposition 2.2] and [18, Proposition 3.5]. �

For the special case of trivial extensions of domains by their quotient fields,
we obtain the following result.

Corollary 2.1. Let A be a domain, K := qf(A) and R := AnK be the trivial
ring extension of A by K. Then, R is a weakly Bézout ring if and only if A is
a weakly Bézout.

In this part, we give characterization of weakly Bézout rings.

Proposition 2.1. Let R be a ring. Consider the following properties:

(1) For each a ∈ Rb, where b is a nonunit element of R, then Ra is a direct
summand of R.
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(2) For each a ∈ Rb, where b is a nonunit element of R, then a ∈ Ra2.
(3) R is a weakly Bézout ring.

Then, (1)⇒ (2)⇒ (3). In particular, if a is an idempotent element of R, then
(3)⇒ (1).

Proof. (1) ⇒ (2) Let a ∈ Rb, where b is a nonunit element of R and let I be
an ideal of R such that

(∗) I ⊕Ra = R.

We can write 1 = u + v for some u ∈ I and v ∈ Ra. Multiplying the above
equality by u (resp., v) we get that u2 = u (resp., v2 = v). Thus I = Ru and
Ra = Rv, therefore a = au+ av = av by (∗), hence a = a2x for some x ∈ R.

(2)⇒ (3) Let J be a principal ideal generated by a nonunit element b of R,
and let I be a finitely generated ideal of R contained in J . It suffices to prove
that if I = (e, f), then there exists an element c in R such that I = Rc. Since
e ∈ J = Rb then e ∈ Re2, also f ∈ Rf2. Let u = ex and v = fy, where e2x = e
and f2y = f . Then, the element c = u + v − uv has the required property.
Indeed, we have c = ex+ fy− exfy. So, ec = e+ efy− efy, hence e ∈ Rc; by
symmetry f ∈ Rc.

(3)⇒ (1) Let a be an idempotent element of R and b be a nonunit element of
R such that a ∈ Rb. Since b is nonunit we have the containments Ra ⊆ Rb  R.
From the definition of a weakly Bézout ring, we can write Ra = Rc for some
element c ∈ R. It follows that Ra⊕R(1− c) = R. �

Now, we turn our attention to the transfer of the Bézout property to amalga-
mation of rings A ./f J . It is easy to see that, if J = 0, then A ./f J ∼= A, and
so A ./f J is a Bézout ring if and only if so is A. If J = B, then A ./f J = A×B
is a Bézout ring if and only if so is A and B by [19, Lemma 2.8]. We assume
now that J is a nonzero proper ideal of B.

Theorem 2.2. Let f : A→ B be a ring homomorphism and let J be a proper
ideal of B.

(1) Assume that J is a finitely generated ideal of f(A) + J . If A ./f J is
Bézout, then so is A.

(2) Assume that f−1(J) is a finitely generated ideal of A. If A ./f J is
Bézout, then so is f(A) + J .
In particular, if f−1(J) = 0, then A ./f J is a Bézout ring if and only
if f(A) + J is a Bézout ring.

Proof. (1) Assume that J is a finitely generated ideal of f(A)+J . By applying
condition (1) of [2, Lemma 2.3] we get that (0) × J is finitely generated of

A ./f J , and since A./fJ
{0}×J

∼= A by [8, Proposition 5.1(3)], then A is Bézout by

[7, Proposition 2.8].
(2) Assume that f−1(J) is a finitely generated ideal of A. By applying

condition (1) of [2, Lemma 2.3] we get that f−1(J) × (0) is finitely generated
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of A ./f J , and since A./fJ
f−1(J)×{0}

∼= f(A) + J by [8, Proposition 5.1(3)], then

f(A) + J is Bézout by [7, Proposition 2.8]. �

Next, we study the weakly Bézout property in the amalgamated algebra
along an ideal J with respect to a ring homomorphism f : A → B. Note
that J can be regarded as an A-module with the A-module structure naturally
induced by f in the following way:

r · j = f(r)j.

Theorem 2.3. Let f : A → B be a ring homomorphism, J a proper ideal of
B and R := A ./f J .

(1) Suppose that A is a domain and J is a divisible A-module (e.g., B :=
qf(A)[X] and J := (X)). If R is weakly Bézout, then A is weakly
Bézout.

(2) Let A be a local ring with maximal ideal M and f(M)J = 0.
(a) If R is a weakly Bézout ring. Then, A is a weakly Bézout ring.
(b) If A is a weakly Bézout ring and J2 = 0. Then, R is a weakly

Bézout ring.

The proof of this theorem requires the following lemma.

Lemma 2.1. Let A be a domain. Under the hypothesis of Theorem 2.3, the
following statements are equivalent:

(1) J is a divisible A-module.
(2) R(a, f(a)) = Aa ./f J for all a ∈ Ar {0}.

Proof. (1)⇒ (2) Assume that J is a divisible A-module and let a be a nonzero
element in A. Our aim is to show that R(a, f(a)) = Aa ./f J . Indeed, let α ∈ A
and e ∈ J . Then, by divisibility e = a · j = f(a)j for some j ∈ J and, hence,
(αa, f(αa)+e) = (α, f(α))(a, f(a))+(0, e) = (α, f(α))(a, f(a))+(0, j)(a, f(a)).

(2) ⇒ (1) Assume that R(a, f(a)) = Aa ./f J for each nonzero element in
A. Then, Aa ./f aJ = R(a, f(a)) = Aa ./f J , so J = aJ . �

Proof of Theorem 2.3. (1) Let I :=
∑i=n

i=1 Aai with ai ∈ A for i = 1, . . . , n
and K := Ab be two proper ideals of A such that I ⊆ K. Then, I ./f J :=∑i=n

i=1 Aai ./
f J = Aa1 ./

f J+Aa2 ./
f J+· · ·+Aan ./f J =

∑i=n
i=1 R(ai, f(ai))

contained in K ./f J := Ab ./f J = R(b, f(b)), by Lemma 2.1. Therefore,
I ./f J = R(a, f(a)+k) for some element (a, f(a)+k) of R since R is a weakly
Bézout ring. Hence, I = Aa, and therefore A is a weakly Bézout ring.

(2) (a) Suppose that R is a weakly Bézout ring. Our aim is to show that A
is weakly Bézout. Let K be a principal ideal generated by a nonunit element
b of A, and let I be a finitely generated ideal of A contained in K. Then,
I ./f 0 ⊆ K ./f 0 are two finitely generated proper ideals of R. Moreover,
K ./f 0 = Ab ./f 0 = R(b, f(b)) and so I ./f 0 ⊆ K ./f 0 is a principal ideal
of R since R is a weakly Bézout ring that is, I ./f 0 = R(a, f(a)) = Aa ./f 0
for some element a of A. Hence I = Aa.
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(b) Assume that A is a weakly Bézout ring and J2 = 0. Our aim is to

show that R is a weakly Bézout ring. Let I :=
∑i=n

i=1 R(ai, f(ai) + ei) ⊆ K :=
R(b, f(b)+l) be two proper ideals of R such that n is a positive integer, ai, b ∈ A
and ei, l ∈ J for each i ∈ {1, . . . , n}, we wish to show that I is principal. Three
cases are then possible.
Case 1. Let b = 0. Then, ai = 0 for all i = 1, . . . , n; I := 0 ./f J1 and
K := 0 ./f J2 where J1 (resp., J2) is a vector subspace of J generated by the
vectors e1, . . . , en (resp., l). Hence, J1 is a (A/M)-vector space of rank at most
1 (since J1 ⊆ J2 = (A/M)l) that is, J1 = (A/M)h, where h ∈ J1. Therefore,
I := 0 ./f (A/M)h = R(0, h) and so I is a principal ideal of R.
Case 2. Let b 6= 0 and ai = 0 for all i ∈ {1, . . . , n}. In this case, I := 0 ./f J1

and so principal since K := R(b, f(b) + l) ⊆ Ab ./f (A/M)l.
Case 3. Let b 6= 0 and ai 6= 0 for some i ∈ {1, . . . , n}. We assume that

((ai, f(ai) + ei)
n
i=1) is a minimal generating set of I, I0 :=

∑i=n
i=1 Aai and

K0 := Ab. Consider the exact sequence of R-modules:

0→ Ker(u)→Rn ∼= An ./f
n

Jn u→ I → 0,

where u((ci, f(ci)+gi)
n
i=1) =

∑n
i=1(ci, f(ci)+gi)(ai, f(ai)+ei). But, Ker(u) ⊆

(M ./f J)n by [24, Lemma 4.43, page 134] since R is local by [22, Lemma 2.2].
Hence,

Ker(u)

= {((ci, f(ci) + gi))
n
i=1 ∈ Rn :

n∑
i=1

(ci, f(ci) + gi)(ai, f(ai) + ei) = 0}

= {((ci, f(ci) + gi))
n
i=1 ∈ Rn :

n∑
i=1

ciai = 0} (since f(M)J = 0 and J2 = 0)

= V ./f
n

Jn,

where V := {(c)ni=1 ∈ An :
∑n

i=1 ciai = 0}. Also, we have the exact sequence
of R-modules:

0→ Ker(w)→ Rn w→ I0 ./
f 0→ 0,

where w((αi, f(αi) + ki)) =
∑n

i=1(αi, f(αi) + ki)(ai, f(ai)). But, Ker(w) =

{((αi, f(αi) + ki))
n
i=1 ∈ Rn :

∑n
i=1 αiai = 0} = V ./f

n

Jn. Therefore, I ∼=
I0 ./

f 0 and since I0 ⊆ K0 (because I ⊆ K), then I0 = Aa for some element
a ∈ A since A is a weakly Bézout ring and so I0 ./

f 0 = Aa ./f 0 = R(a, f(a)).
Hence, I is a principal ideal of R in all cases. So, R is a weakly Bézout ring. �

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.2. Let A be a local ring with maximal ideal M , I and J be two
proper ideals of A. Let B = A/I and f : A → B be the canonical homomor-
phism (f(x) = x̄) such that MJ̄ = 0. Then, A ./f J is weakly Bézout if and
only if A is weakly Bézout.
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One may use Theorem 2.2 and Theorem 2.3 to enrich the literature with
new examples of weakly Bézout rings which are not Bézout, as shown below.

Example 2.1. Let A be a local Bézout ring with maximal ideal M (e.g.,
A := Zp and M := pZp, where p is a prime ideal of Z), B := A n (A/M)2

and J := 0 n (A/M)2. Consider the natural injective ring homomorphism
f : A ↪→ B. Then, the amalgamation A ./f J is a non-Bézout weakly Bézout
ring.

Proof. Notice first that f(M)J = 0 and f−1(J) = 0. Further, B is weakly
Bézout by [13, Theorem 2.4 (1)]. So, R is weakly Bézout by Theorem 2.3(2)(b)
as J2 = 0. However, R is not Bézout by Theorem 2.2(2) since f(A) + J = B
which is not Bézout by [13, Theorem 2.4(2)]. �

Proposition 2.2. Let f : A→ B be a ring homomorphism, J a proper nonzero
ideal of B and R := A ./f J . If A contains a non-invertible regular element
(that is, A is not a total ring of quotients) such that f(a)J = 0 and J2 = 0.
Then, R is never a Bézout ring.

Proof. Suppose the result is false, i.e., R is a Bézout ring. Let 0 6= e ∈ J ,
and consider the elements (a, f(a)) and (0, e) of R. Then, the ideal K :=
R(a, f(a)) +R(0, e) of R is principal. Set K = (b, f(b) + j) for some b ∈ A and
j ∈ J . Hence, Aa = Ab. Then, there exists a nonzero element α ∈ A such that
a = αb, thus b is a regular element of A since a is regular, and so b = ua for some
invertible element u of A. Therefore, R(b, f(b) + j) = R(ua, f(u)f(a) + j) =
R(u, f(u))(a, f(a) + f(u−1)j) = R(a, f(a) + f(u−1)j). Then, K := R(a, f(a) +
f(u−1)j). On the other hand (a, f(a)) ∈ K, so there exists (c, f(c)+l) ∈ R such
that (a, f(a)) = (c, f(c) + l)(a, f(a) + f(u−1)j) = (ca, f(ca) + f(cu−1)j) since
f(a)J = 0 and J2 = 0. Hence, ac = a and f(ca)+f(cu−1)j = f(a). Thus c = 1,
j = 0; and so R(a, f(a)) + R(0, e) = K = R(b, f(b)) = R(a, f(a)) = Aa ./f 0.
Therefore, (0, e) ∈ Aa ./f 0, which is a contradiction since 0 6= e. It follows
that R is not a Bézout ring. �

By Theorem 2.2 and Proposition 2.2, we have the following example.

Example 2.2. Let A be a local Bézout ring with maximal ideal M (e.g.,
A := K[[X]] denote the ring of formal power series over the field K in an inde-
terminate X and M := (X)), B := A/(X2) and J := (X)/(X2). Consider the
canonical ring homomorphism f : A → B (f(x) = x̄). Then, the amalgama-
tion A ./f J is a non-Bézout weakly Bézout ring. Indeed, it is easily seen that
J2 = 0. So, A ./f J is weakly Bézout by Theorem 2.3(2)(b) since f(M)J = 0,
but not Bézout by Proposition 2.2 since f(X)J = 0.

Finally, in the context of domains we show that the amalgamated is a Bézout
ring if and only it is a weakly Bézout ring. Thus, one may provide new examples
of weakly Bézout rings.



850 H. EL ALAOUI

Theorem 2.4. Let A and B be a pair of domains, f : A → B a ring homo-
morphism and let J be an ideal of B and divisible A-module.

(1) Assume that f is injective. Then the following statements are equivalent:
(i) A ./f J is a Bézout ring.
(ii) A ./f J is a weakly Bézout ring.

(iii) One of the following conditions holds:
• J = B, A and B are weakly Bézout rings.
• J 6= B, f(A) ∩ J = 0 and f(A) + J is a weakly Bézout ring.

(2) Assume that f is not injective. Then the following statements are
equivalent:
(i) A ./f J is a Bézout ring.

(ii) A ./f J is a weakly Bézout ring.
(iii) J = 0, and A is a weakly Bézout ring.

The proof of this theorem needs the following lemma.

Lemma 2.2. Let f : A → B be a ring homomorphism, J an ideal of B and
divisible A-module.

(1) Assume that f(Reg(A)) ⊆ Reg(B). If J is proper, then f(Reg(A)) ∩
J = 0.

(2) Assume that A is domain. If f is not injective, then J = 0.

Proof. (1) Suppose that f(Reg(A)) ∩ J 6= 0. Then, there exists a ∈ Reg(A)
such that f(a) ∈ J r {0}, and since J is a divisible A-module, then f(a) = a · e
for some e ∈ J and hence J = B since f(a) ∈ Reg(B).

(2) Let e ∈ J . Since f is not injective there exists a ∈ Ker(f) r {0} such
that f(a) = 0. On the other hand, J is a divisible A-module, then there exists
j ∈ J such that e = a · j = f(a)j = 0. Hence, J = 0. �

Proof of Theorem 2.4. (1) (ii)⇒(iii) Assume that J 6= B. By using the condi-
tion (1) of Lemma 2.2 , we get that f(A)∩J = 0. Then, the natural projection
pB : A ./f J → f(A) + J (pB(a, f(a) + j) = f(a) + j)) is a ring isomorphism.
Indeed, f(a)+ j = 0 implies that f(a) = −j, which is in J . Hence f(a) belongs
f(A) intersection J = 0. Consequently, f(a) = j = 0, which tends by the
injectivity of f to a = 0. The conclusion is now straightforward.

(iii)⇒(i) If J = B, then A and B are Bézout rings since every weakly Bézout
domain is a Bézout ring by [13, Proposition 2.2]. Hence A ./f J = A × B
is a Bézout ring [19, Lemma 2.8(1)]. Now we assume that J 6= B. Then
A ./f J = f(A)+J and so A ./f J is a weakly Bézout domain. This completes
the proof of Theorem 2.4.

(2) It is an immediate consequence of Lemma 2.2(2) and [13, Proposition
2.2]. �

It is worth to mention that in case A = B, J = I is a nonzero ideal of A,
and f is the identity homomorphism on A, the weakly Bézout ring property on
A ./ I forces I to be the non-proper as it is shown by the following corollary.
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Corollary 2.3. Let A be a domain and let I be a nonzero ideal of A. Then
A ./ I is a weakly Bézout ring if and only if so is A and I = A.

Example 2.3. Let T := R[X](X) = R + M , where X is an indeterminate

over R and M := XT the maximal ideal of T . Then, R ./i M , where i is the
inclusion map of R into T ; is a weakly Bézout ring by Theorem 2.4(1).

Acknowledgments. The author would like to express their sincere thanks for
the referee for his/her helpful suggestions and comments, which have greatly
improved this paper.
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