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ON NONNIL-m-FORMALLY NOETHERIAN RINGS

Abdelamir Dabbabi and Ahmed Maatallah

Abstract. The purpose of this paper is to introduce a new class of rings

containing the class of m-formally Noetherian rings and contained in the

class of nonnil-SFT rings introduced and investigated by Benhissi and
Dabbabi in 2023 [4]. Let A be a commutative ring with a unit. The ring

A is said to be nonnil-m-formally Noetherian, wherem ≥ 1 is an integer, if
for each increasing sequence of nonnil ideals (In)n≥0 of A the (increasing)

sequence (
∑

i1+···+im=n Ii1Ii2 · · · Iim )n≥0 is stationnary. We investigate

the nonnil-m-formally Noetherian variant of some well known theorems on

Noetherian and m-formally Noetherian rings. Also we study the transfer
of this property to the trivial extension and the amalgamation algebra

along an ideal. Among other results, it is shown that A is a nonnil-

m-formally Noetherian ring if and only if the m-power of each nonnil
radical ideal is finitely generated. Also, we prove that a flat overring of

a nonnil-m-formally Noetherian ring is a nonnil-m-formally Noetherian.

In addition, several characterizations are given. We establish some other
results concerning m-formally Noetherian rings.

1. Introduction

In this paper, all rings are commutative with an identity element and the
dimension of a ring means its Krull dimension. Let A be a ring. We shall
denote by Nil(A) the nilradical of A and I ⊂ J means I is strictly contained
in J for some sets I, J . In [11], Khalifa has introduced the concept of m-
formally Noetherian ring. A ring A is called an m-formally Noetherian ring if
the m-power of each ideal of A is finitely generated. The class of m-formally
Noetherian rings contains the class of Noetherian rings and it is contained in
the class of SFT rings. So each m-formally Noetherian ring has a Noetherian
spectrum. Moreover, in a reduced ring the concepts of m-formally Noetherian
and Noetherian coincide. For more results, see [11].

In [3], Badawi generalized the concept of Noetherian rings by introducing
a new class of rings, namely, the nonnil-Noetherian rings. A ring A is called
nonnil-Noetherian if each nonnil ideal of A is finitely generated. It is obvious
that Noetherian rings are both m-formally Noetherian and nonnil-Noetherian
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but the converse is not true. This concept inspired several authors, for example
see [4], [5] and [12]. Now, it is natural to investigate the relation between nonnil-
Noetherian rings andm-formally Noetherian rings (see [11], Theorem 2.21). For
instance, let A = (K[Xi, i ≥ 1])/⟨Xi

i , i ≥ 1⟩, where K is a field and X1, X2, . . .
is a countably family of indeterminates. Then A is nonnil-Noetherian but not
m-formally Noetherian. Indeed, the m-power of the ideal of A generated by
{X̄i, i ≥ 1} is not finitely generated for every m ≥ 1 (see [11], Example 2.22).

The main purpose of this paper is to integrate the concepts of nonnil-
Noetherian rings and m-formally Noetherian rings, and so to construct a new
class of rings that contains the two previous classes. For this, we introduce the
concept of nonnil-m-formally Noetherian rings as follows: Let A be a ring, I
an ideal of A and m ≥ 1 an integer. An ideal I of A is said to be a nonnil ideal
if it is not contained in the nilradical of A (i.e. I ⊈ Nil(A)). The ring A is
called nonnil-m-formally Noetherian if for each increasing sequence of nonnil-
ideals (In)n≥0 of A the (increasing) sequence (

∑
i1+···+im=n Ii1Ii2 · · · Iim)n≥0 is

stationary. We start by showing that A is nonnil-m-formally Noetherian ring
if and only if the m-power of each nonnil ideal of A is finitely generated. If
Nil(A) = 0, then the notion of nonnil-m-formally Noetherian rings coincides
with that of m-formally Noetherian rings. Clearly any nonnil-Noetherian ring
is a nonnil-m-formally Noetherian ring.

Among other characterizations of nonnil-m-formally Noetherian rings, we
show that if the ring A is in the class of the commutative ring with divided
prime nilradical ideal (denoted H), then A is a nonnil-m-formally Noetherian
ring if and only if A/Nil(A) is an m-formally Noetherian ring. Also, we study
the transfer of this property to the trivial extension, the amalgamated algebra
along an ideal and flat overrings. For instance, we prove that a flat overring of
a nonnil-m-formally Noetherian ring is again a nonnil-m-formally Noetherian
ring. On the other hand, we give a complete characterization of a decomposable
ring to be nonnil-m-formally Noetherian and so we conclude a characterization
of the product ring to be nonnil-m-formally Noetherian. Some other properties
of m-formally Noetherian rings are also established.

2. Main results

Definition 2.1. Let A be a ring and m ≥ 1 an integer. The ring A is said
to be nonnil-m-formally Noetherian if for each increasing sequence of nonnil-
ideals (In)n≥0 of A, the (increasing) sequence (

∑
i1+···+im=n Ii1Ii2 · · · Iim)n≥0

is stationnary.

Clearly nonnil-Noetherian rings are nonnil-m-formally Noetherian rings.

Example 2.2. Let A be a ring and m ≥ 1 an integer. If A is m-formally
Noetherian, then A is nonnil-m-formally Noetherian but the converse is not
true. Indeed, let A be a nonnil-Noetherian ring which is not m-formally Noe-
therian for every m ≥ 1 (for example K[Xn, n ≥ 2]/⟨Xn

n , n ≥ 2⟩). Since A is a
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nonnil-Noetherian, it is nonnil-m-formally Noetherian but A is not m-formally
Noetherian for every m ≥ 1.

Lemma 2.3 ([9], Lemma 1.2.). Let A be a ring and I an ideal of A. If there
exists an integer n ≥ 1 such that In is finitely generated, then there exists a
finitely generated ideal J ⊆ I such that In = Jn.

Theorem 2.4. Let A be a ring and m ≥ 1 an integer. The following conditions
are equivalent:

(1) The ring A is nonnil-m-formally Noetherian.
(2) For each increasing sequence of nonnil ideals (In)n≥0 of A, there exist

k1, k2, . . . , km ∈ N such that for each n1, n2, . . . , nm ∈ N satisfying
ni ≥ ki for i = 1, . . . ,m, we have In1 · · · Inm ⊆ Ik1 · · · Ikm .

(3) For each increasing sequence of nonnil-ideals (In)n≥0 of A, there exist
k1, k2, . . . , km ∈ N such that for every integer n ≥ max(k1, . . . , km),
Imn ⊆ Ik1

· · · Ikm
.

(4) For each increasing sequence of nonnil ideals (In)n≥0 of A, the
(increasing) sequence (Imn )n≥0 is stationnary.

(5) For each increasing sequence of finitely generated nonnil ideals (Fn)n≥0

of A the (increasing) sequence (
∑

i1+···+im=n Fi1Fi2 · · ·Fim)n≥0 is sta-
tionnary.

(6) For each increasing sequence of finitely generated nonnil ideals (Fn)n≥0

of A, there exist k1, k2, . . . , km ∈ N such that for each n1, n2, . . . , nm ∈
N satisfying ni ≥ ki for i = 1, . . . ,m, we have Fn1 · · ·Fnm ⊆ Fk1 · · ·
Fkm .

(7) For each increasing sequence of finitely generated nonnil ideals (Fn)n≥0

of A, there exist k1, k2, . . . , km ∈ N such that for every integer n ≥
max(k1, . . . , km), Fm

n ⊆ Fk1
· · ·Fkm

.
(8) For each increasing sequence of finitely generated nonnil ideals (Fn)n≥0

of A, the (increasing) sequence (Fm
n )n≥0 is stationnary.

(9) For each nonnil ideal I of A, there exists a finitely generated ideal F ⊆ I
of A such that Im = Fm.

(10) For each nonnil ideal I of A, Im is finitely generated.

Proof. For each n ≥ 0, set Sn =
∑

i1+···+im=n Ii1Ii2 · · · Iim and S′
n =∑

i1+···+im=n Fi1Fi2 · · ·Fim .

(1) ⇒ (2) Let k ≥ 1 be an integer such that for every n ≥ k, Sn = Sk (since
A is nonnil-m-formally Noetherian). For each 1 ≤ j ≤ m, set kj = max{ij ∈
N | there exist i1 + · · ·+ im = k with i1 ≤ · · · ≤ ij−1 ≤ ij ≤ ij+1 ≤ · · · ≤ im}.
Now, let i1, . . . , im ∈ N be such that i1 + · · · + im = k, with i1 ≤ · · · ≤ im.
For every 1 ≤ j ≤ m, we have ij ≤ kj . Since Ii1 · · · Iim ⊆ Ik1 · · · Ikm , so Sk ⊆
Ik1 · · · Ikm . Thus for every n1 ≥ k1, . . . , nm ≥ km, In1 · · · Inm ⊆ Sn1+···+nm =
Sk ⊆ Ik1

· · · Ikm
.

(2) ⇒ (3) Trivial. (3) ⇒ (4) Let k = max(k1, . . . , km). Then for every
n ≥ k, Imn ⊆ Ik1

· · · Ikm
⊆ Imk .
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(4) ⇒ (5) Let k be an integer such that Fm
n = Fm

k for every n ≥ k. Then
for each n ≥ k, S′

nm ⊆ Fm
n = Fm

k ⊆ S′
km ⊆ S′

nm.
(5) ⇒ (6) By the same way as (1) ⇒ (2).
(6) ⇒ (7) By the same way as (2) ⇒ (3).
(7) ⇒ (8) By the same way as (3) ⇒ (4).
(8) ⇒ (9) Assume that there exists a nonnil ideal I such that for every

finitely generated ideal F ⊆ I of A, Im ̸= Fm. Then I ̸= (0). Take a ∈
I \ (0). Since Im ̸= ⟨a⟩m, there exist a1,1, . . . , a1,m ∈ I such that a1,1 · · · a1,m /∈
⟨a⟩m. Again Im ̸= ⟨a, a1,1, . . . , a1,m⟩, then there exist a2,1, . . . , a2,m ∈ I such
that a2,1, . . . , a2,m /∈ ⟨a, a1,1, . . . , a1,m⟩. By induction there exist m sequences
(ai,1)i≥0, . . . , (ai,m)i≥0 of elements of I such that ak+1,1 · · · ak+1,m /∈ Fm

k for
each k ≥ 0, where Fk = ⟨a, a1,1, . . . , a1,m, . . . , ak,1, . . . , ak,m⟩, contradiction.

(9) ⇒ (10) Clear. (10) ⇒ (1) Let (In)n≥0 be an increasing sequence of
nonnil ideals of A, and I =

⋃
n≥0 In. Since the sequence (In)n≥0 is increasing,

then I is an ideal of A. It is clear that I is a nonnil ideal. Thus Im is finitely
generated. By Lemma 2.3, there exists a finitely generated ideal F ⊆ I such
that Im = Fm. Let k ≥ 1 be such that F ⊆ Ik (since F is finitely generated).
Hence for each i1, . . . , im ∈ N, Ii1 . . . Iim ⊆ Im = Fm ⊆ Imk ⊆ Skm. □

Corollary 2.5. Let f : A −→ B be a surjective homomorphism of rings and
m ≥ 1 be an integer. If A is a nonnil-m-formally Noetherian ring, so is B.

Proof. Let J be a nonnil ideal of B and I = f−1(J). Clearly I is a nonnil
ideal, so there exists a finitely generated ideal F ⊆ I such that Im = Fm by
Theorem 2.4. Hence Jm = f(Im) = f(Fm) = f(F )m with f(F ) a finitely
generated ideal of B (since f is surjective). Thus Jm is finitely generated, and
so B is nonnil-m-formally Noetherian. □

Example 2.6. Let A be a nonnil-m-formally Noetherian ring. Then for each
ideal I of A, the ring A/I is nonnil-m-formally Noetherian.

Lemma 2.7 ([9], Lemmas 1.1 and 1.2). Let A be a ring, I an ideal of A and
m ≥ 1 an integer. If Im is finitely generated, so is Im+1.

Corollary 2.8. If a ring A is nonnil-m-formally Noetherian for some m ≥ 1,
then it is nonnil-(m+ 1)-formally Noetherian.

Theorem 2.9. Let A ∈ H. The following statements are equivalent:

(1) A is a nonnil-m-formally Noetherian ring.
(2) A/Nil(A) is an m-formally Noetherian ring.

Proof. (1) ⇒ (2) Let J be a nonzero ideal of A/Nil(A). Then J = I/Nil(A),
where Nil(A) ⊂ I. Since I is a nonnil ideal of A, Im is a finitely generated
ideal of A. Thus, Jm = (I/Nil(A))m = (Im + Nil(A))/Nil(A) is a finitely
generated ideal of A/Nil(A).

(2) ⇒ (1) Let I be a nonnil ideal of A. Since Nil(A) is a divided ideal,
Nil(A) ⊂ I. Then I/Nil(A) is a nonzero ideal ofA/Nil(A), hence, (I/Nil(A))m
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is a finitely generated ideal of A/Nil(A). Suppose that Im ⊆ Nil(A). Then

Im ⊆ Nil(A) ⊂ I. It follows that
√
I = Nil(A), and so I ⊆ Nil(A), ab-

surd. Hence, Nil(A) ⊂ Im, and (I/Nil(A))m = Im/Nil(A). Therefore,
Im/Nil(A) = (i1, . . . , in) for some i1, . . . , in ∈ Im. We will show that Im =
(i1, . . . , in). Since Nil(A) is a divided ideal, we have Nil(A) ⊂ (i1, . . . , in).
Indeed, suppose that (i1, . . . , in) ⊆ Nil(A). Then Im/Nil(A) = (0), and

Im = Nil(A), it follows that Nil(A) =
√
Im =

√
I. Thus, I ⊆ Nil(A), absurd.

Now, let x ∈ Im\Nil(A). There exist w ∈ Nil(A) and a1, . . . , an ∈ A such that
x+ w = i1a1 + · · ·+ inan. Since x /∈ Nil(A), clearly Nil(A) ⊂ (x). Therefore
w = xy for some y ∈ A. On the other hand, Nil(A) is prime ideal. It yields
that y ∈ Nil(A) and 1 + y is a unit of A. Thus, x+ w = x+ xy = x(1 + y) ∈
(i1, . . . , in). Finally, x ∈ (i1, . . . , in). Consequently, A is a nonnil-m-formally
Noetherian ring. □

Using the previous theorem, ([11], Corollary 2.7) and ([3], Theorem 2.2), we
have the following corollary.

Corollary 2.10. Let A ∈ H and m ≥ 1 an integer. The following statements
are equivalent:

1. A is a nonnil-m-formally Noetherian ring.
2. A/Nil(A) is an m-formally Noetherian ring.
3. A/Nil(A) is a Noetherian ring.
4. A is a nonnil-Noetherian ring.

Remark 2.11. In general (without the condition A ∈ H), if the ring A is a
nonnil-m-formally Noetherian ring, then A/Nil(A) is an m-formally Noether-
ian, and so a Noetherian ring.

Theorem 2.12. A ring A is nonnil-m-formally Noetherian if and only if the
m-power of every nonnil radical ideal of A is finitely generated.

Proof. Let I be a nonnil ideal of A. Let P be a prime ideal of A/I. Then
some power of P is finitely generated. Indeed, P = P/I for some prime ideal
P of A containing I. Then P is a nonnil radical ideal, thus Pm is finitely
generated, and so is Pm. Therefore, every prime ideal of A/I has a power, which

is finitely generated. Using ([9], Proposition 1.18), (A/I)/(
√
I/I) ≃ A/

√
I is a

Noetherian ring and (
√
I/I)k = (0) for some k ≥ 1. Thus (

√
I)k ⊆ I, and so

(
√
I)km ⊆ Im ⊆ (

√
I)m. Now, by ([11], Lemma 2.15) Im is finitely generated

(because
√
I is nonnil). □

Corollary 2.13. A nonnil-m-formally Noetherian ring such that the m-power
of its nilradical is finitely generated is an m-formally Noetherian ring.

Proposition 2.14. If A is a nonnil-m-formally Noetherian ring, then the fol-
lowing assertions are equivalent:

1. A is a Noetherian ring.
2. Nil(A) is finitely generated.
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3. Each minimal prime ideal of A is finitely generated.
4. The A-module Nil(A)/Nil(A)2 is finitely generated.

Proof. If A is a nonnil-m-formally Noetherian ring, then A/Nil(A) is Noether-
ian. Now, use ([9], Proposition 1.18). □

Remark 2.15. Since every nonnil-Noetherian ring is a nonnil-m-formally Noe-
therian ring, the above result remains true in the case of nonnil-Noetherian
ring.

According to [4] a ring A is called a nonnil-SFT if each nonnil ideal I of A
is SFT, i.e, there exist a finitely generated ideal F ⊆ I of A and an integer
k ≥ 1 such that xk ∈ F for every x ∈ I. In the following, we will establish
the relationship between the nonnil-SFT and the nonnil-m-formally Noetherian
concepts.

Proposition 2.16. Let A be a chained ring. The following statements are
equivalent:

1. A is nonnil-m-formally Noetherian for some m.
2. A is an nonnil-SFT ring with Krull dimension ≤ 1.

Proof. It is clear that A ∈ H. Now, using ([11], Corollary 2.23) and ([4],
Proposition 1.4), we have: A is a nonnil-m-formally Noetherian ring if and
only if A/Nil(A) is an m-formally Noetherian ring if and only if A/Nil(A) is
an SFT ring with Krull dimension ≤ 1 if and only if A is a nonnil-SFT ring
with Krull dimension ≤ 1. □

Proposition 2.17. If A is a nonnil-m-formally Noetherian ring, then the com-
plete integral closure and the integral closure of A coincides.

Proof. Let x be an element of the total quotient ring of A such that x is almost
integral over A. Then there exist a regular element r of A such that rxn ∈ A
for all nonzero integer n. Consider, for each n, In = (r, rx, . . . , rxn). Since
r ∈ In, In is a nonnil ideal of A. Clearly In ⊆ In+1. By hypotheses, Imn = Imn+1

for some integer n. Hence, (rxn+1)m ∈ Im. Since r is a regular element of A,
we have (x(n+1)m) ∈ (1, x, . . . , xnm). Consequently, x is integral over A. □

Recall that a ring A is said to have a Noetherian spectrum (or Spec(A)
is Noetherian) if each prime ideal is the radical of a finitely generated ideal,
equivalently, each radical ideal is the radical of a finitely generated ideal, that
is also equivalent to the fact that the ring A satisfies the ascending chain
condition on the radical ideals. It is well-known that if A is a Noetherian ring,
then Spec(A) is Noetherian. We have the following similar result.

Proposition 2.18. If A is a nonnil-m-formally Noetherian ring, then Spec(A)
is Noetherian.
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Proof. It suffices to show that each prime ideal is the radical of a finitely
generated ideal. Let P ∈ Spec(A). If P = Nil(A), then P =

√
(0). If

P ⊈ Nil(A), then by hypothesis, Pm = I is a finitely generated ideal. Thus,

P =
√
Pm =

√
I. □

Example 2.19. The converse of the previous proposition is false. Indeed, let
V be a finite dimensional non-SFT valuation domain. Since V has only finite
number of prime ideals, it has a Noetherian spectrum. But V is not SFT,
hence it is not nonnil-SFT (because it is an integral domain). Thus, V is not
nonnil-m-formally Noetherian.

Corollary 2.20. If A is a nonnil-m-formally Noetherian ring, then each ideal
of A has a finitely many minimal primes.

Corollary 2.21. If A is an m-formally Noetherian ring, then Spec(A) is Noe-
therian.

It is known that if P ⊂ Q are prime ideals in a Noetherian ring such that
there exists a prime ideal properly between them, then there are infinitely
many. The following result is a generalization of the previous result.

Proposition 2.22. Let A ∈ H be a nonnil-m-formally Noetherian ring, and
let P ⊂ Q be prime ideals in A such that there exists a prime ideal properly
between them. Then there are infinitely many.

Proof. Using ([3], Theorem 2.10) and Corollary 2.10. □

Let A be a ring and M an A-module. The set A × M endowed with the
operations defined by:

(a,m) + (a′,m′) = (a+ a′,m+m′) and (a,m)(a′,m′) = (aa′, am′ + a′m)

with a, a′ ∈ A and m,m′ ∈ M , is a commutative ring with identity, denoted
by A(+)M . This ring, called the idealization of M in A, was first introduced
by Nagata, and massively used in the construction of the counterexample. The
reader is referred to [1, 10] for more information about the rings A(+)M .

Proposition 2.23. Let A be a ring and M an A-module. The ring A(+)M is
nonnil-m-formally Noetherian if and only if A is nonnil-m-formally Noether-
ian ring and the A-module Im−1M/ImM is finitely generated for every nonnil
radical ideal I of A.

Proof. (⇒) Since (A(+)M)/((0)(+)M) ≃ A, by Corollary 2.5, A is a nonnil-m-
formally Noetherian ring. For the second part, let I be a nonnil radical ideal of
A, then (I(+)M)m = Im(+)Im−1M is a nonnil radical ideal of A(+)M . Thus,
Im−1M = H + ImM for some finitely generated submodule H of M . Hence,
Im−1M/ImM is finitely generated.

(⇐) Let I be a nonnil radical ideal of A(+)M . Then I = I(+)M for some
nonnil radical ideal I of A. Thus, Im is a finitely generated ideal of A and
the A-module Im−1M/ImM is finitely generated. Then, Im−1M = H + ImM



618 A. DABBABI AND A. MAATALLAH

for some finitely generated submodule H of M . Consequently, (I(+)M)m =
Im(+)Im−1M is finitely generated ideals of A(+)M . □

Corollary 2.24. Let A be a ring and m ≥ 2 an integer. Then A(+)A is nonnil-
m-formally Noetherian if and only if A is nonnil-(m− 1)-formally Noetherian.

Now, we deal with a subring of the product ring A×B, where A and B are
two rings, denoted by A ▷◁f J . Let J be an ideal of B and let f : A −→ B be
a ring homomorphism. We consider:

A ▷◁f J = {(a, f(a) + j); a ∈ A and j ∈ J}.
This subring, called the amalgamation of A with B along J with respect to
f , was introduced and studied by D’Anna, Finocchiaro, and Fontana in [6].
This construction is a generalization of the amalgamated duplication of a ring
along an ideal that was introduced and studied in [7, 8] (the amalgamated
duplication of a ring A along an ideal I is the amalgamation of A with A along
I with respect to f = idA). In the following, we will see when the ring A ▷◁f J
is nonnil-m-formally Noetherian.

Theorem 2.25. Let A and B be two rings, J ̸= {0} be an ideal of B and
f : A −→ B be a ring homomorphism. Assume that A ▷◁f J ∈ H. Then, the
ring A ▷◁f J is nonnil-m-formally Noetherian if and only if the rings A and
f(A) + J are nonnil-m-formally Noetherian.

Proof. “ ⇒ ” It follows from Corollary 2.5, since (A ▷◁f J)/({0} × J) ≃ A and
(A ▷◁f J)/(f−1(J)× {0}) ≃ f(A) + J .

“ ⇐ ” Consider Ā = A/Nil(A), B̄ = B/Nil(B) and J̄ = π(J), where
π : B −→ B̄ is the canonical epimorphism. We consider the map f̄ : Ā −→ B̄
defined by f̄(ā) = f(a). It is clear that f̄ is a ring homomorphism.

Now, let Ψ : f(A) + J −→ f̄(Ā) + J̄ be the map defined by Ψ(f(x) + j) =
f̄(x̄) + j̄. By ([4], Remark 2.11), f−1(J) ⊆ Nil(A), then Ψ is well defined
and is a ring homomorphism as the restriction of the canonical surjection from
B −→ B̄. Let x̄ ∈ f̄−1(J̄). We have f(x) = f̄(x̄) ∈ J̄ . Then there exists j ∈ J
such that f(x)−j ∈ Nil(B). So (f(x)−j)k = 0 for some k ≥ 1. It follows that
f(xk) ∈ J . Thus x ∈ Nil(A). It shows that x̄ = 0̄, and hence f̄(Ā)

⋂
J̄ = {0̄}.

Now, let f(x) + j ∈ ker(Ψ). Then f(x) + j̄ = 0̄. It yields that f(x) = 0̄ and
j̄ = 0̄, which implies that f(x), j ∈ Nil(B). Hence f(x) + j ∈ Nil(B)∩ (f(A) +
J) = Nil(f(A)+J). Consequently, ker(Ψ) ⊆ Nil(f(A)+J). The other inclusion
is easy. Hence, (f(A)+J)/Nil(f(A)+J) ≃ f̄(Ā)+ J̄ . By Theorem 2.10, A and

f̄(Ā) + J̄ are Noetherian rings. Hence, using ([6], Proposition 5.6), Ā ▷◁f̄ J̄ is

a Noetherian ring. By ([13]. Remark 2.6), (A ▷◁f J)/Nil(A ▷◁f J) ≃ Ā ▷◁f̄ J̄ .
Consequently, by Corollary 2.10, A ▷◁f J is a nonnil-m-formally Noetherian
ring. □

Example 2.26. Let A be a ring and I an ideal of A. If A ▷◁ I ∈ H, then:

A ▷◁ I is a nonnil-m-formally Noetherian if and only if so is A
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In ([13], Corollary 2.3) it was shown that A ∈ H if and only if A ▷◁ Nil(A) ∈
H. Then, we get immediately the following corollary.

Corollary 2.27. Let A ∈ H be a ring. Then the ring A ▷◁ Nil(A) is nonnil-m-
formally Noetherian if and only if the ring A is nonnil-m-formally Noetherian.

A ring A is called decomposable if it can be written in the form A = A1 ⊕
A2 where A1 and A2 are two nonzero rings. The decomposition of A is not
unique and for each decomposition A = A1 ⊕ A2, we define the two following
projections, π1 : A −→ A1 and π2 : A −→ A2 by π1(x) = x1 and π2(x) = x2

for each x = x1 + x2 ∈ A. It is clear that A1 = π1(A), A2 = π2(A) and A =
π1(A)⊕π2(A). Therefore, we can describe the set of rings of the decomposition
of A by their associated projections, i.e, a family {πi | i ∈ Λ} of epimorphisms
from A in πi(A) with πi(A) ̸= {0} for every i ∈ Λ, and for each i ∈ Λ, there
exists j ∈ Λ such that A = πi(A)⊕ πj(A).

Theorem 2.28. Let A be a decomposable ring and {πi | i ∈ Λ} the set of
canonical epimorphisms from A to each component of a decomposition of A.
The following statements are equivalent:

(1) The ring A is m-formally Noetherian for some m ≥ 1.
(2) The ring A is nonnil-m-formally Noetherian for some m ≥ 1.
(3) For each i ∈ Λ, the ring πi(A) is m-formally Noetherian for some

m ≥ 1.
(4) There exists m ≥ 1 such that the following condition holds. If e ∈

A \ {0, 1} is an idempotent element, then the m-power of each ideal of
A contained in ⟨e⟩ is finitely generated.

Proof. (1) ⇒ (2) Trivial. (2) ⇒ (3) Let i ∈ Λ. Then A = πi(A) ⊕ πj(A) for
some j ∈ Λ. Let I be an ideal of πi(A). We have I ⊕ πj(A) is a nonnil ideal of
A. It follows that the m power of I ⊕ πj(A) is finitely generated. Thus there
exists a finitely generated ideal F ⊆ I⊕πj(A) of A such that (I⊕πj(A))m = F .
Therefore Im = πi(F ), with πi(F ) is a finitely generated ideal of πi(A). Thus
πi(A) is m-formally Noetherian.

(3) ⇒ (4) Let e ∈ A \ {0, 1} be an idempotent element and I be an ideal of
A contained in ⟨e⟩. We have A = ⟨e⟩ ⊕ ⟨1− e⟩. By hypothesis, the ring ⟨e⟩ is
m-formally Noetherian. Thus there exists a finitely generated ideal F ⊆ I of
⟨e⟩ such that Im = F . Since the ideal F ⊕ {0} of A is finitely generated, the
ideal Im of A is finitely generated, which complete the proof.

(4) ⇒ (1) Let I be an ideal of A. Since A is decomposable, A = ⟨e⟩⊕⟨1− e⟩
for some idempotent element e ∈ A \ {0, 1}. It yields that I = Ie ⊕ I1−e where
Ie and I1−e are two ideals of ⟨e⟩ and ⟨1− e⟩ respectively. There exist i, j ∈ Λ
such that ⟨e⟩ = πi(A) and ⟨1 − e⟩ = πj(A). Consequently, there exist finitely
generated ideals E ⊆ Ie and F ⊆ I1−e of A such that Ime = E and Im1−e =

F . Hence I2m = (Ie ⊕ I1−e)
2m =

∑2m
i=0 C

i
2mIieI

2m−i
1−e =

∑m
i=0 C

r
2mIieI

2m−i
1−e +∑2m

i=m+1 C
i
2mIieI

2m−i
1−e = E ⊕ F . Thus I2m is a finitely generated ideal of A,

and so A is 2m-formally Noetherian. □
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Corollary 2.29. Let {Ai}i∈Λ be a family of rings with cardinality at least
2. We consider the product ring A =

∏
i∈Λ Ai. The following conditions are

equivalent:

(1) The set Λ is finite and for each i ∈ Λ, the ring Ai is m-formally
Noetherian for some m ≥ 1.

(2) The ring A is m-formally Noetherian for some m ≥ 1.
(3) The ring A is nonnil-m-formally Noetherian for some m ≥ 1.

Proof. (1) ⇒ (2) By the previous theorem. (2) ⇒ (3) Clear.
(3) ⇒ (1) By the previous theorem, for each i ∈ Λ the ring Ai is m-formally

Noetherian. Assume that |Λ| = ∞. Consider the ideal I of A of all elements
with finite support. Since Im is finitely generated, there exists n ≥ 1 such that
Im = ⟨ei1 , . . . , ein⟩ where ei = (δi,j)j∈Λ, for each i ∈ Λ. Let r ∈ Λ\{i1, . . . , in}.
Then er = emr ∈ Im = ⟨ei1 , . . . , ein⟩. Consequently, supp(er) ⊆ {i1, . . . , in},
which is impossible. Hence Λ is finite. □

Example 2.30. Let A be a ring and m ≥ 1 an integer. Then the product
ring A × A is nonnil-m-formally Noetherian if and only if A is m-formally
Noetherian.

Remark 2.31. Let A1, . . . , An be a finite number of rings. Assume that each
Ai is an mi-formally Noetherian ring for some mi ≥ 1. Then A1 × · · · × An is
m-formally Noetherian, where m = max{m1, . . . ,mn}.

Let A be a ring. It is shown in [2] that each flat overring B of A has the
form B = {x ∈ T | there exists I ∈ S such that xI ⊆ A}, where T is the total
quotient ring of A and S is a multiplicative system of ideals of A. Moreover, we
can choose S such that IB = B for each I ∈ S. Also Arnold and Brewer in ([2].
Theorem 1.3) have proved that for each prime ideal Q of B, there exists a prime
ideal P of A such that Q = PS = {x ∈ T | there exists I ∈ S such that xI ⊆
P}. By [4], each flat overring of a nonnil-SFT ring is also a nonnil-SFT ring.
It turns out that a flat overring of a nonnil-m-formally Noetherian ring has a
Noetherian spectrum. Now, assume that A is nonnil-m-formally Noetherian.
Thus by the previous discussion each radical ideal of B is a finite intersection
of prime ideals. In this case, one can easily see that for each radical ideal Q
of B there exists an ideal L of A such that Q = LS . In the following theorem
we study the stability of the nonnil-m-formally Noetherian concept via flat
overrings.

Theorem 2.32. Let A be a nonnil-m-formally Noetherian ring. Then each
flat overring of A is nonnil-m-formally Noetherian.

Proof. Let B be a flat overring of A. Then there exists a multiplicative system
of ideals S of A such that

B = {x ∈ T | there exists I ∈ S such that xI ⊆ A},
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where T is the total quotient ring of A. As we said previously, we may assume
that IB = B for each I ∈ S. Let Q be a nonnil radical ideal of B. Thus L =
Q∩A ⊈ Nil(A). Indeed, if L ⊆ Nil(A), then for each x ∈ Q there exists I ∈ S
such that xI ⊆ L. It yields that xB = xIB ⊆ LB. It follows that x ∈ LB ⊆
Nil(B). Thus Q ⊆ Nil(B), absurd. As A is nonnil-m-formally Noetherian,
there exists a finitely generated ideal F ⊆ L of A such that Lm = F . Let
x1, . . . , xm ∈ Q. For each i = 1, . . . ,m there exists Ii ∈ S such that xiIi ⊆ L.
Set I = I1I2 · · · Im. Then I ∈ S and x1x2 · · ·xmI = (x1I1) · · · (xmIm) ⊆ Lm =
F . It yields that (x1 · · ·xm)B = (x1 · · ·xmI)B ⊆ FB. Hence x1 · · ·xm ∈ FB,
so Qm ⊆ FB = LmB ⊆ Qm. Thus Qm = FB with FB is a finitely generated
ideal of B. Thus B is nonnil-m-formally Noetherian. □

An immediate corollary of the above theorem can be found by observing the
fact that a localization of a ring is a flat overring of the ring.

Corollary 2.33. Let A be a ring and S ⊂ A a multiplicative set. If A is
nonnil-m-formally Noetherian, so is AS.

Remark 2.34. Let A be a ring and m ≥ 1 an integer. A similar proof as the
proof of the previous theorem, one can see that if A is anm-formally Noetherian
ring, so is each flat overring of A.
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