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ON NONNIL-m-FORMALLY NOETHERIAN RINGS

ABDELAMIR DABBABI AND AHMED MAATALLAH

ABSTRACT. The purpose of this paper is to introduce a new class of rings
containing the class of m-formally Noetherian rings and contained in the
class of nonnil-SFT rings introduced and investigated by Benhissi and
Dabbabi in 2023 [4]. Let A be a commutative ring with a unit. The ring
A is said to be nonnil-m-formally Noetherian, where m > 1 is an integer, if
for each increasing sequence of nonnil ideals (1), >0 of A the (increasing)
sequence (Zi1+~~+z‘m:n I I, - - - I;,, )n>0 is stationnary. We investigate
the nonnil-m-formally Noetherian variant of some well known theorems on
Noetherian and m-formally Noetherian rings. Also we study the transfer
of this property to the trivial extension and the amalgamation algebra
along an ideal. Among other results, it is shown that A is a nonnil-
m-formally Noetherian ring if and only if the m-power of each nonnil
radical ideal is finitely generated. Also, we prove that a flat overring of
a nonnil-m-formally Noetherian ring is a nonnil-m-formally Noetherian.
In addition, several characterizations are given. We establish some other
results concerning m-formally Noetherian rings.

1. Introduction

In this paper, all rings are commutative with an identity element and the
dimension of a ring means its Krull dimension. Let A be a ring. We shall
denote by Nil(A) the nilradical of A and I C J means I is strictly contained
in J for some sets I,J. In [11], Khalifa has introduced the concept of m-
formally Noetherian ring. A ring A is called an m-formally Noetherian ring if
the m-power of each ideal of A is finitely generated. The class of m-formally
Noetherian rings contains the class of Noetherian rings and it is contained in
the class of SFT rings. So each m-formally Noetherian ring has a Noetherian
spectrum. Moreover, in a reduced ring the concepts of m-formally Noetherian
and Noetherian coincide. For more results, see [11].

In [3], Badawi generalized the concept of Noetherian rings by introducing
a new class of rings, namely, the nonnil-Noetherian rings. A ring A is called
nonnil-Noetherian if each nonnil ideal of A is finitely generated. It is obvious
that Noetherian rings are both m-formally Noetherian and nonnil-Noetherian
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but the converse is not true. This concept inspired several authors, for example
see [4], [5] and [12]. Now, it is natural to investigate the relation between nonnil-
Noetherian rings and m-formally Noetherian rings (see [11], Theorem 2.21). For
instance, let A = (K[X;, i > 1])/(X}, i > 1), where K is a field and X1, Xs, ...
is a countably family of indeterminates. Then A is nonnil-Noetherian but not
m-formally Noetherian. Indeed, the m-power of the ideal of A generated by
{X;, i > 1} is not finitely generated for every m > 1 (see [11], Example 2.22).

The main purpose of this paper is to integrate the concepts of nonnil-
Noetherian rings and m-formally Noetherian rings, and so to construct a new
class of rings that contains the two previous classes. For this, we introduce the
concept of nonnil-m-formally Noetherian rings as follows: Let A be a ring, I
an ideal of A and m > 1 an integer. An ideal I of A is said to be a nonnil ideal
if it is not contained in the nilradical of A (i.e. I € Nil(A)). The ring A is
called nonnil-m-formally Noetherian if for each increasing sequence of nonnil-
ideals (1)n>0 of A the (increasing) sequence (3_; .\, _, LiiLiy -+ Ii,, Jn>0 is
stationary. We start by showing that A is nonnil-m-formally Noetherian ring
if and only if the m-power of each nonnil ideal of A is finitely generated. If
Nil(A) = 0, then the notion of nonnil-m-formally Noetherian rings coincides
with that of m-formally Noetherian rings. Clearly any nonnil-Noetherian ring
is a nonnil-m-formally Noetherian ring.

Among other characterizations of nonnil-m-formally Noetherian rings, we
show that if the ring A is in the class of the commutative ring with divided
prime nilradical ideal (denoted #), then A is a nonnil-m-formally Noetherian
ring if and only if A/Nil(A) is an m-formally Noetherian ring. Also, we study
the transfer of this property to the trivial extension, the amalgamated algebra
along an ideal and flat overrings. For instance, we prove that a flat overring of
a nonnil-m-formally Noetherian ring is again a nonnil-m-formally Noetherian
ring. On the other hand, we give a complete characterization of a decomposable
ring to be nonnil-m-formally Noetherian and so we conclude a characterization
of the product ring to be nonnil-m-formally Noetherian. Some other properties
of m-formally Noetherian rings are also established.

2. Main results

Definition 2.1. Let A be a ring and m > 1 an integer. The ring A is said
to be nonnil-m-formally Noetherian if for each increasing sequence of nonnil-
ideals (I,)n>0 of A, the (increasing) sequence (> L Ly, I Jn>o0
is stationnary.

i1+ t+im=n

Clearly nonnil-Noetherian rings are nonnil-m-formally Noetherian rings.

Example 2.2. Let A be a ring and m > 1 an integer. If A is m-formally
Noetherian, then A is nonnil-m-formally Noetherian but the converse is not
true. Indeed, let A be a nonnil-Noetherian ring which is not m-formally Noe-
therian for every m > 1 (for example K[X,,, n > 2]/(X?, n > 2)). Since A is a

n?
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nonnil-Noetherian, it is nonnil-m-formally Noetherian but A is not m-formally
Noetherian for every m > 1.

Lemma 2.3 ([9], Lemma 1.2.). Let A be a ring and I an ideal of A. If there
exists an integer n > 1 such that I™ is finitely generated, then there exists a
finitely generated ideal J C I such that I™ = J™.

Theorem 2.4. Let A be a ring and m > 1 an integer. The following conditions
are equivalent:

(1) The ring A is nonnil-m-formally Noetherian.

(2) For each increasing sequence of nonnil ideals (I,)n>0 of A, there exist
ki,ko, ... km € N such that for each ni,no,...,n, € N satisfying
ng > k; fori=1,...,m, we have I, ---I,,,, C Ip, -+ I, .

(3) For each increasing sequence of nonnil-ideals (I,)n>0 of A, there exist
k1,ko, ... km € N such that for every integer n > max(k1,...,kn),
ImCcl, - I,.

(4) For each increasing sequence of nonnil ideals (In)n>0 of A, the
(increasing) sequence (IN"),>0 is stationnary.

(5) For each increasing sequence of finitely generated nonnil ideals (Fy,)n>0
of A the (increasing) sequence (D F;, Fy, - F;, )n>o0 is sta-
tionnary.

(6) For each increasing sequence of finitely generated nonnil ideals (Fy,)n>0
of A, there exist ki, ko, ..., kn € N such that for each ny,ng, ..., Ny €
N satisfying n; > k; fori=1,...,m, we have F,, ---F,, C Fy, ---
By, .

(7) For each increasing sequence of finitely generated nonnil ideals (Fy,)n>0
of A, there exist ki,ka, ..., km € N such that for every integer n >
max(ky, ..., km), Fi" C Fy, -+ Fy,.

(8) For each increasing sequence of finitely generated nonnil ideals (Fy,)n>0
of A, the (increasing) sequence (F')n>0 is stationnary.

(9) For each nonnil ideal I of A, there exists a finitely generated ideal FF C I
of A such that I™ = F™.

(10) For each nonnil ideal I of A, I™ is finitely generated.

Proof. For each n > 0, set S, = Ziﬁ__‘ﬂ.m:n Ii,L,---I; and S/ =
Zi1+~~+im:n FilFiz t Fim~

(1) = (2) Let k > 1 be an integer such that for every n > k, S,, = Si, (since
A is nonnil-m-formally Noetherian). For each 1 < j < m, set k; = max{i; €
N| there exist 21++’Lm :kWIth’Ll <... Sij—l SZJ Sij-&-l < .- Slm}
Now, let i1,...,%, € N be such that iy +--- 4+ 4, = k, with 71 < -+ < iy
For every 1 < j < 'm, we have i; < k;. Since I;, ---1;,, C Iy, -+ Iy, , so S C
I, -1y, . Thus for every ny > ki,...,0m > km, In, - In,, € Sni+egn, =
S C Iy, -+ I,

14 i =n

(2) = (3) Trivial. (3) = (4) Let k = max(ky,...,kn). Then for every
n>k, I C Iy - I, C I

m —
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(4) = (5) Let k be an integer such that F* = F;" for every n > k. Then
for eachn >k, S}, CFm=F CS),, €S/,
(5) = (6) By the same way as (1) = (2).

(6) = (7) By the same way as (2) = (3).
(7) = (8) By the same way as (3) = (4).

(8) = (9) Assume that there exists a nonnil ideal I such that for every
finitely generated ideal FF C I of A, I"™ # F™. Then I # (0). Take a €
I\ (0). Since I"™ # (a)™, there exist a1,1,...,a1,m € I such that a11---a1,m ¢
(@)™. Again I"™ # (a,a1,1,...,01,m), then there exist as1,...,a2,, € I such
that ag1,...,a2.m ¢ (a,a1,1,...,a1,m). By induction there exist m sequences
(@i1)i>05 -+ (@im)izo of elements of I such that aji1,1---ap1,m ¢ Fy* for
each k > 0, where Fi, = (a,a1,1,---,Q1ms- -5k 1, - - - Qk,m), contradiction.

(9) = (10) Clear. (10) = (1) Let (I,)n>0 be an increasing sequence of
nonnil ideals of A, and I = J,,~, In. Since the sequence (I,),>0 is increasing,
then I is an ideal of A. It is clear that I is a nonnil ideal. Thus I™ is finitely
generated. By Lemma 2.3, there exists a finitely generated ideal F' C I such
that I"™ = F"™. Let k > 1 be such that F C I (since F is finitely generated).
Hence for each i1,...,0m €N, [;, ... [;, CI™ =F™" CI" C Skm. ([

Corollary 2.5. Let f: A — B be a surjective homomorphism of rings and
m > 1 be an integer. If A is a nonnil-m-formally Noetherian ring, so is B.

Proof. Let J be a nonnil ideal of B and I = f~1(J). Clearly I is a nonnil
ideal, so there exists a finitely generated ideal F' C I such that I™ = F™ by
Theorem 2.4. Hence J™ = f(I™) = f(F™) = f(F)™ with f(F) a finitely
generated ideal of B (since f is surjective). Thus J™ is finitely generated, and
so B is nonnil-m-formally Noetherian. t

Example 2.6. Let A be a nonnil-m-formally Noetherian ring. Then for each
ideal I of A, the ring A/I is nonnil-m-formally Noetherian.

Lemma 2.7 ([9], Lemmas 1.1 and 1.2). Let A be a ring, I an ideal of A and
m > 1 an integer. If I'™ is finitely generated, so is I"™T1.

Corollary 2.8. If a ring A is nonnil-m-formally Noetherian for some m > 1,
then it is nonnil-(m + 1)-formally Noetherian.

Theorem 2.9. Let A € H. The following statements are equivalent:

(1) A is a nonnil-m-formally Noetherian ring.
(2) A/Nil(A) is an m-formally Noetherian ring.

Proof. (1) = (2) Let J be a nonzero ideal of A/Nil(A). Then J = I/Nil(A),
where Nil(A) C I. Since I is a nonnil ideal of A, I"™ is a finitely generated
ideal of A. Thus, J™ = (I/Nil(A))™ = (I"™ + Nil(A))/Nil(A) is a finitely
generated ideal of A/Nil(A).

(2) = (1) Let I be a nonnil ideal of A. Since Nil(A) is a divided ideal,
Nil(A) C I. Then I/Nil(A) is anonzero ideal of A/Nil(A), hence, (I /Nil(A))™
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is a finitely generated ideal of A/Nil(A). Suppose that I"™ C Nil(A). Then
I™ C Nil(A) c I. Tt follows that v/ = Nil(A), and so I C Nil(A), ab-
surd. Hence, Nil(A) C I™, and (I/Nil(A))™ = I™/Nil(A). Therefore,
I™/Nil(A) = (i1,...,4,) for some i1,...,i, € I"™. We will show that I™ =
(i1,...,4,). Since Nil(A) is a divided ideal, we have Nil(A) C (i1,...,in).
Indeed, suppose that (i1,...,4,) € Nil(A). Then I™/Nil(A) = (0), and
I™ = Nil(A), it follows that Nil(A) = v/T™ = +/I. Thus, I C Nil(A), absurd.
Now, let z € I"™\ Nil(A). There exist w € Nil(A) and a4, ..., a, € Asuch that
T +w=1i1a1 + -+ ina,. Since x ¢ Nil(A), clearly Nil(A) C (z). Therefore
w = xy for some y € A. On the other hand, Nil(A) is prime ideal. It yields
that y € Nil(A) and 1 +y is a unit of A. Thus, x+w =242y =z(l+y) €
(i1,...,iy). Finally, x € (i1,...,4,). Consequently, A is a nonnil-m-formally
Noetherian ring. (I

Using the previous theorem, ([11], Corollary 2.7) and ([3], Theorem 2.2), we
have the following corollary.

Corollary 2.10. Let A € H and m > 1 an integer. The following statements
are equivalent:

1. A is a nonnil-m-formally Noetherian ring.

2. A/Nil(A) is an m-formally Noetherian ring.

3. A/Nil(A) is a Noetherian ring.

4. A is a nonnil-Noetherian ring.

Remark 2.11. In general (without the condition A € H), if the ring A is a
nonnil-m-formally Noetherian ring, then A/Nil(A) is an m-formally Noether-
ian, and so a Noetherian ring.

Theorem 2.12. A ring A is nonnil-m-formally Noetherian if and only if the
m-power of every nonnil radical ideal of A is finitely generated.

Proof. Let I be a nonnil ideal of A. Let P be a prime ideal of A/I. Then
some power of P is finitely generated. Indeed, P = P/I for some prime ideal
P of A containing I. Then P is a nonnil radical ideal, thus P™ is finitely
generated, and so is P™. Therefore, every prime ideal of A/I has a power, which
is finitely generated. Using ([9], Proposition 1.18), (A/I)/(VT/I) ~ A/VT is a
Noetherian ring and (v/T/I)* = (0) for some k > 1. Thus (v1)* C I, and so
(VT)k™ C 1™ C (V/I)™. Now, by ([11], Lemma 2.15) I" is finitely generated
(because /T is nonnil). O

Corollary 2.13. A nonnil-m-formally Noetherian ring such that the m-power
of its nilradical is finitely generated is an m-formally Noetherian ring.

Proposition 2.14. If A is a nonnil-m-formally Noetherian ring, then the fol-
lowing assertions are equivalent:

1. A is a Noetherian ring.
2. Nil(A) is finitely generated.
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3. Each minimal prime ideal of A is finitely generated.
4. The A-module Nil(A)/Nil(A)? is finitely generated.

Proof. If A is a nonnil-m-formally Noetherian ring, then A/Nil(A) is Noether-
ian. Now, use ([9], Proposition 1.18). O

Remark 2.15. Since every nonnil-Noetherian ring is a nonnil-m-formally Noe-
therian ring, the above result remains true in the case of nonnil-Noetherian
ring.

According to [4] a ring A is called a nonnil-SFT if each nonnil ideal I of A
is SFT, i.e, there exist a finitely generated ideal F' C I of A and an integer
k > 1 such that ¥ € F for every € I. In the following, we will establish
the relationship between the nonnil-SFT and the nonnil-m-formally Noetherian
concepts.

Proposition 2.16. Let A be a chained ring. The following statements are
equivalent:

1. A is nonnil-m-formally Noetherian for some m.
2. A is an nonnil-SET ring with Krull dimension < 1.

Proof. It is clear that A € H. Now, using ([11], Corollary 2.23) and ([4],
Proposition 1.4), we have: A is a nonnil-m-formally Noetherian ring if and
only if A/Nil(A) is an m-formally Noetherian ring if and only if A/Nil(A) is
an SFT ring with Krull dimension < 1 if and only if A is a nonnil-SFT ring
with Krull dimension < 1. O

Proposition 2.17. If A is a nonnil-m-formally Noetherian ring, then the com-
plete integral closure and the integral closure of A coincides.

Proof. Let z be an element of the total quotient ring of A such that x is almost
integral over A. Then there exist a regular element r of A such that rz™ € A
for all nonzero integer n. Cousider, for each n, I, = (r,rz,...,rz™). Since
r € I, I, is a nonnil ideal of A. Clearly I,, C I,;1. By hypotheses, I, = IT", ;
for some integer n. Hence, (rz"*1)™ € I". Since r is a regular element of A,
we have (z(™*D™) € (1,z,...,2™™). Consequently, z is integral over A. O

Recall that a ring A is said to have a Noetherian spectrum (or Spec(A)
is Noetherian) if each prime ideal is the radical of a finitely generated ideal,
equivalently, each radical ideal is the radical of a finitely generated ideal, that
is also equivalent to the fact that the ring A satisfies the ascending chain
condition on the radical ideals. It is well-known that if A is a Noetherian ring,
then Spec(A) is Noetherian. We have the following similar result.

Proposition 2.18. If A is a nonnil-m-formally Noetherian ring, then Spec(A)
is Noetherian.
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Proof. 1t suffices to show that each prime ideal is the radical of a finitely
generated ideal. Let P € Spec(A). If P = Nil(A), then P = /(0). If
P ¢ Nil(A), then by hypothesis, P™ = I is a finitely generated ideal. Thus,
P=yPm=\I O

Example 2.19. The converse of the previous proposition is false. Indeed, let
V be a finite dimensional non-SF'T valuation domain. Since V has only finite
number of prime ideals, it has a Noetherian spectrum. But V is not SFT,
hence it is not nonnil-SFT (because it is an integral domain). Thus, V is not
nonnil-m-formally Noetherian.

Corollary 2.20. If A is a nonnil-m-formally Noetherian ring, then each ideal
of A has a finitely many minimal primes.

Corollary 2.21. If A is an m-formally Noetherian ring, then Spec(A) is Noe-
therian.

It is known that if P C @ are prime ideals in a Noetherian ring such that
there exists a prime ideal properly between them, then there are infinitely
many. The following result is a generalization of the previous result.

Proposition 2.22. Let A € H be a nonnil-m-formally Noetherian ring, and
let P C @ be prime ideals in A such that there exists a prime ideal properly
between them. Then there are infinitely many.

Proof. Using ([3], Theorem 2.10) and Corollary 2.10. O

Let A be a ring and M an A-module. The set A x M endowed with the
operations defined by:

(a,m) + (a',m") = (a+a',m +m') and (a,m)(a’,m’) = (ad’,am’ + a'm)
with a,a’ € A and m,m’ € M, is a commutative ring with identity, denoted
by A(+)M. This ring, called the idealization of M in A, was first introduced

by Nagata, and massively used in the construction of the counterexample. The
reader is referred to [1,10] for more information about the rings A(+)M.

Proposition 2.23. Let A be a ring and M an A-module. The ring A(+)M is
nonnil-m-formally Noetherian if and only if A is nonnil-m-formally Noether-
ian ring and the A-module I™ 1M /I™M is finitely generated for every nonmil
radical ideal I of A.

Proof. (=) Since (A(+)M)/((0)(+)M) ~ A, by Corollary 2.5, A is a nonnil-m-
formally Noetherian ring. For the second part, let I be a nonnil radical ideal of
A, then (I(+)M)™ = I"™(+)I™ 1M is a nonnil radical ideal of A(+)M. Thus,
I™ M = H 4+ I™M for some finitely generated submodule H of M. Hence,
I™=1M/I™M is finitely generated.

(<) Let Z be a nonnil radical ideal of A(+)M. Then Z = I(+)M for some
nonnil radical ideal I of A. Thus, I™ is a finitely generated ideal of A and
the A-module I™ 1M /I™M is finitely generated. Then, ™ 1M = H + ™M
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for some finitely generated submodule H of M. Consequently, (I(+)M)™ =
I™(+)I™~1M is finitely generated ideals of A(+)M. O

Corollary 2.24. Let A be a ring and m > 2 an integer. Then A(+)A is nonnil-
m-formally Noetherian if and only if A is nonnil-(m — 1)-formally Noetherian.

Now, we deal with a subring of the product ring A x B, where A and B are
two rings, denoted by A >4/ J. Let J be an ideal of B and let f : A — B be
a ring homomorphism. We consider:

Aval J={(a,f(a)+7);ac Aand jec J}.

This subring, called the amalgamation of A with B along J with respect to
f, was introduced and studied by D’Anna, Finocchiaro, and Fontana in [6].
This construction is a generalization of the amalgamated duplication of a ring
along an ideal that was introduced and studied in [7,8] (the amalgamated
duplication of a ring A along an ideal I is the amalgamation of A with A along
I with respect to f = id). In the following, we will see when the ring A </ .J
is nonnil-m-formally Noetherian.

Theorem 2.25. Let A and B be two rings, J # {0} be an ideal of B and
f: A — B be a ring homomorphism. Assume that A <! J € H. Then, the
ring A <! J is nonnil-m-formally Noetherian if and only if the rings A and
f(A) + J are nonnil-m-formally Noetherian.

Proof. “ =" It follows from Corollary 2.5, since (A >/ J)/({0} x J) ~ A and
(Asal J)/(F() % {0}) = F(4) + J. _

“ «< 7 Consider A = A/Nil(4), B = B/Nil(B) and J = x(J), where
7 : B — B is the canonical epimorphism. We consider the map f: A — B
defined by f(a) = f(a). It is clear that f is a ring homomorphism.

Now, let W : f(A) +J — f(A) + J be the map defined by W(f(z) + j) =
f(z) + 3. By ([4], Remark 2.11), f~1(J) C Nil(A), then ¥ is well defined
and is a ring homomorphism as the restriction of the canonical surjection from
B — B. Let € f~'(J). We have f(z) = f(z) € J. Then there exists j € J
such that f(x)—j € Nil(B). So (f(x)—7)* = 0 for some k > 1. It follows that
f(z*) € J. Thus x € Nil(A). It shows that # = 0, and hence f(A4)(J = {0}.
Now, let f(x) 4+ j € ker(¥). Then f(x) 4+ j = 0. It yields that f(z) = 0 and
j =0, which implies that f(z),j € Nil(B). Hence f(z)+ j € Nil(B) N (f(A) +
J) = Nil(f(A)+J). Consequently, ker(¥) C Nil(f(A)+J). The other inclusion
is easy. Hence, (f(A)+J)/Nil(f(A)+J) ~ f(A)+J. By Theorem 2.10, A and
f(A) + J are Noetherian rings. Hence, using ([6], Proposition 5.6), A >/ J is
a Noetherian ring. By ([13]. Remark 2.6), (A >/ J)/Nil(A >/ J) ~ A/ J.
Consequently, by Corollary 2.10, A </ J is a nonnil-m-formally Noetherian
ring. O

Example 2.26. Let A be a ring and I an ideal of A. If A I € H, then:

A I is a nonnil-m-formally Noetherian if and only if so is A
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In ([13], Corollary 2.3) it was shown that A € H if and only if A > Nil(4) €
‘H. Then, we get immediately the following corollary.

Corollary 2.27. Let A € H be a ring. Then the ring A<t Nil(A) is nonnil-m-
formally Noetherian if and only if the ring A is nonnil-m-formally Noetherian.

A ring A is called decomposable if it can be written in the form A = A, &
Ay where A; and A, are two nonzero rings. The decomposition of A is not
unique and for each decomposition A = A; ® As, we define the two following
projections, m : A — A; and w3 : A — Ay by mi(x) = 21 and ma(z) = a9
for each © = x1 + 29 € A. Tt is clear that A; = m1(A4), Ay = m2(A) and A =
m1(A) @72 (A). Therefore, we can describe the set of rings of the decomposition
of A by their associated projections, i.e, a family {m; | i € A} of epimorphisms
from A in m;(A) with m;(A) # {0} for every ¢« € A, and for each i € A, there
exists j € A such that A = m;(A) @ 7;(A).

Theorem 2.28. Let A be a decomposable ring and {m; | i € A} the set of
canonical epimorphisms from A to each component of a decomposition of A.
The following statements are equivalent:

(1) The ring A is m-formally Noetherian for some m > 1.

(2) The ring A is nonnil-m-formally Noetherian for some m > 1.

(3) For each i € A, the ring m;(A) is m-formally Noetherian for some
m > 1.

(4) There exists m > 1 such that the following condition holds. If e €
AN{0,1} is an idempotent element, then the m-power of each ideal of
A contained in {(e) is finitely generated.

Proof. (1) = (2) Trivial. (2) = (3) Let ¢ € A. Then A = m;(A) & 7;(A) for
some j € A. Let I be an ideal of m;(A). We have I @ m;(A) is a nonnil ideal of
A. Tt follows that the m power of I @ m;(A) is finitely generated. Thus there
exists a finitely generated ideal F' C I@®m;(A) of A such that (I®m;(A))™ = F.
Therefore I"™ = m;(F'), with m;(F) is a finitely generated ideal of m;(A). Thus
m;(A) is m-formally Noetherian.

(3) = (4) Let e € A\ {0,1} be an idempotent element and I be an ideal of
A contained in (e). We have A = (e) @ (1 — e). By hypothesis, the ring (e) is
m-formally Noetherian. Thus there exists a finitely generated ideal F' C I of
(€) such that I'™ = F. Since the ideal F & {0} of A is finitely generated, the
ideal I of A is finitely generated, which complete the proof.

(4) = (1) Let I be an ideal of A. Since A is decomposable, A = {e) ® (1 —e)
for some idempotent element e € A\ {0,1}. It yields that I = I. & I;_. where
I, and I _. are two ideals of (e) and (1 — e) respectively. There exist ¢,j € A
such that (e) = m;(A) and (1 —e) = 7;(A). Consequently, there exist finitely
generated ideals £ C I, and F C I;_. of A such that I]® = E and IT", =
F. Hence I*" = (I, ® [, _.)*™ = Y2 4, TiTFm 70 = S Co T
S Ch TP — B @ F. Thus I2™ is a finitely generated ideal of A,

1=m-+1
and so A is 2m-formally Noetherian. O
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Corollary 2.29. Let {A;}ica be a family of rings with cardinality at least
2. We consider the product ring A = [[;cp Ai. The following conditions are
equivalent:

(1) The set A is finite and for each i € A, the ring A; is m-formally
Noetherian for some m > 1.

(2) The ring A is m-formally Noetherian for some m > 1.

(3) The ring A is nonnil-m-formally Noetherian for some m > 1.

Proof. (1) = (2) By the previous theorem. (2) = (3) Clear.

(3) = (1) By the previous theorem, for each ¢ € A the ring A; is m-formally
Noetherian. Assume that |A| = co. Consider the ideal I of A of all elements
with finite support. Since I is finitely generated, there exists n > 1 such that
I'™ = {(e;,,...,e;,) where e; = (0; j)jen, foreach ¢ € A. Let r € A\ {i1,...,i,}.
Then e, = e* € I"™ = (e;,,...,e;,). Consequently, supp(e,) C {i1,...,in},
which is impossible. Hence A is finite. O

Example 2.30. Let A be a ring and m > 1 an integer. Then the product
ring A x A is nonnil-m-formally Noetherian if and only if A is m-formally
Noetherian.

Remark 2.31. Let Aq,..., A, be a finite number of rings. Assume that each
A; is an m;-formally Noetherian ring for some m; > 1. Then A; x --- X A, is
m-formally Noetherian, where m = max{my,...,my}.

Let A be a ring. It is shown in [2] that each flat overring B of A has the
form B = {x € T | there exists I € S such that I C A}, where T is the total
quotient ring of A and S is a multiplicative system of ideals of A. Moreover, we
can choose S such that IB = B for each I € S. Also Arnold and Brewer in ([2].
Theorem 1.3) have proved that for each prime ideal @ of B, there exists a prime
ideal P of A such that Q@ = Pg = {z € T | there exists I € S such that I C
P}. By [4], each flat overring of a nonnil-SFT ring is also a nonnil-SFT ring.
It turns out that a flat overring of a nonnil-m-formally Noetherian ring has a
Noetherian spectrum. Now, assume that A is nonnil-m-formally Noetherian.
Thus by the previous discussion each radical ideal of B is a finite intersection
of prime ideals. In this case, one can easily see that for each radical ideal @
of B there exists an ideal L of A such that @Q = Lg. In the following theorem
we study the stability of the nonnil-m-formally Noetherian concept via flat
overrings.

Theorem 2.32. Let A be a nonnil-m-formally Noetherian ring. Then each
flat overring of A is nonnil-m-formally Noetherian.

Proof. Let B be a flat overring of A. Then there exists a multiplicative system
of ideals S of A such that

B ={x €T | there exists I € S such that I C A},
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where T is the total quotient ring of A. As we said previously, we may assume
that IB = B for each I € S. Let Q be a nonnil radical ideal of B. Thus L =
QNAZ Nil(A). Indeed, if L C Nil(A), then for each z € Q there exists [ € S
such that I C L. It yields that xtB = xIB C LB. It follows that x € LB C
Nil(B). Thus @ C Nil(B), absurd. As A is nonnil-m-formally Noetherian,
there exists a finitely generated ideal FF C L of A such that L™ = F. Let
T1,...,Tm € Q. For each i = 1,...,m there exists I, € S such that z;I; C L.
Set I =015+ Ip,. Then I € S and zyx9 -2l = (x111) -+ (v ) C L™ =
F. Tt yields that (z1---2m)B = (21 -z, I1)B C FB. Hence z1 -+ -z, € FB,
so QM C FB=L"B C Q™. Thus Q™ = F'B with FB is a finitely generated
ideal of B. Thus B is nonnil-m-formally Noetherian. O

An immediate corollary of the above theorem can be found by observing the
fact that a localization of a ring is a flat overring of the ring.

Corollary 2.33. Let A be a ring and S C A a multiplicative set. If A is
nonnil-m-formally Noetherian, so is Ag.

Remark 2.34. Let A be a ring and m > 1 an integer. A similar proof as the
proof of the previous theorem, one can see that if A is an m-formally Noetherian
ring, so is each flat overring of A.
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