# ON $S$-MULTIPLICATION RINGS 

Mohamed Chhiti and Soibri Moindze


#### Abstract

Let $R$ be a commutative ring with identity and $S$ be a multiplicatively closed subset of $R$. In this article we introduce a new class of ring, called $S$-multiplication rings which are $S$-versions of multiplication rings. An $R$-module $M$ is said to be $S$-multiplication if for each submodule $N$ of $M, s N \subseteq J M \subseteq N$ for some $s \in S$ and ideal $J$ of $R$ (see for instance [4, Definition 1]). An ideal $I$ of $R$ is called $S$-multiplication if $I$ is an $S$-multiplication $R$-module. A commutative ring $R$ is called an $S$-multiplication ring if each ideal of $R$ is $S$-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and $S-P I R$. Moreover, we generalize some properties of multiplication rings to $S$-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal


## 1. Introduction

Throughout this paper all rings are commutative with 1 and all modules are unital. Recall that $R$ is said to be a PIR (principal ideal ring) if every ideal of $R$ is principal. Anderson and Dumitrescu introduced later in their study of $S$-Noetherian rings in [5], the concept of $S$-PIR. An ideal $I$ of $R$ is said to be $S$-finite (resp. $S$-principal) if there are $s \in S$ and a finitely generated (resp. a principal) ideal $K$ of $R$ such that $s I \subseteq K \subseteq I$. We say that $R$ is said to be an $S$-Noetherian ring (resp. an $S$-PIR) if each ideal of $R$ is $S$-finite (resp. $S$-principal). Clearly, every PIR is an $S$-PIR for any multiplicatively closed subset $S$. Recall that an ideal $I$ of $R$ is called a multiplication ideal if for each ideal $J$ of $R$ contained in $I$, there is an ideal $I^{\prime}$ of $R$ such that $J=I I^{\prime}$. We say that $R$ is said to be a multiplication ring if every ideal of $R$ is multiplication and $R$ is said to be an almost multiplication ring if $R_{P}$ is a multiplication ring for all maximal ideal $P$ of $R$ (for instance see [3]). It is well known that every localization of a multiplication ring is still a multiplication ring. Consequently, it is easy to show that every multiplication ring is an

[^0]almost multiplication ring but the converse is not true in general (for instance see [3, p. 765]). Recall from $[12,13]$, that $R$ is said to be arithmetical if every finitely generated ideal of $R$ is locally principal equivalently that every finitely generated ideal is multiplication (cf. [3, Theorem 3]). It is proved in [8, Lemma 2.6] that every almost multiplication ring is arithmetical but the converse is not true in general (see for instance [8, Example 2.7(2)]. The following diagram of implications summarizes the relation between the prementioned class of rings
$$
\text { multiplication } \Rightarrow \text { almost multiplication } \Rightarrow \text { arithmetical. }
$$

Recently, in [4], the authors introduced and studied the concept of $S$-multiplication modules. An $R$-module $M$ is said to be $S$-multiplication if for each submodule $N$ of $M$ there are $s \in S$ and an ideal $I^{\prime}$ of $R$ such that $s N \subseteq$ $M I^{\prime} \subseteq N$, in this case we can take $I^{\prime}:=(N: M)$. We say that an ideal $I$ of $R$ is an $S$-multiplication ideal if $I$ is an $S$-multiplication $R$-module. We say that $R$ is an $S$-multiplication ring if each ideal of $R$ is $S$-multiplication. Our goal is to study $S$-multiplication rings. Moreover, to examine conditions under which an $S$-multiplication ring $R$ is a multiplication ring or an $S$-PIR for some multiplicatively closed subset $S$ of $R$, we study the transfer of the $S$ multiplication property in the trivial ring extension and amalgamated algebras along an ideal, respectively. In Section 3, we provides some original class of rings satisfying the $S$-multiplication property.

## 2. Main results

We begin this section by the definition of our $S$-version.
Definition 2.1. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. We say that an ideal $I$ of $R$ is an $S$-multiplication ideal if $I$ is an $S$ multiplication $R$-module. We say that $R$ is an $S$-multiplication ring if each ideal of $R$ is $S$-multiplication. If $P$ is a prime ideal of $R$, we say that $R$ is a $P$-multiplication ring if $R$ is an $(R-P)$-multiplication ring.

Example 2.2. Every multiplication ring $R$ is an $S$-multiplication ring for any multiplicatively closed subset $S$ of $R$. The converse is true if $S \subseteq U(R)$, where $U(R)$ is the group of all units of $R$.

The fact that multiplication rings are $S$-multiplication rings for any multiplicatively closed subset $S$ is not reversible in general, see for instance Example 3.1.

Example 2.3. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. If $R$ is an $S$ - $P I R$, then $R$ is an $S$-multiplication ring.

Proof. Let $R$ be an $S$-PIR and let $I$ be an ideal of $R$. Then there are $s \in S$ and a principal ideal $K$ of $R$ such that $s I \subseteq K \subseteq I$. Let $J \subseteq I$ an ideal of $R$. Then $s J \subseteq s I \subseteq K$. Thus there is an ideal $\overline{I^{\prime}}$ of $R$ such that $s J=I^{\prime} K$ since $K$ is multiplication (since $K$ is principal by [3, Theorem 3]). Then $s^{2} J=s I^{\prime} K \subseteq$ $s I^{\prime} I \subseteq I^{\prime} K \subseteq J$. Then $I$ is an $S$-multiplication ideal, as desired.

Let $S$ be a multiplicatively closed subset of a ring $R$. The saturation of $S$ denoted by $S^{*}$ is defined as follows: $S^{*}:=\left\{x \in R: \exists x_{0} \in R, x x_{0} \in S\right\}$. $S$ is said to be saturated if $S=S^{*}$. Notice that we always have $S \subseteq S^{*}$. We say that $S$ satisfies the maximal multiple condition if there exists an $s_{0} \in S$ such that $s \mid s_{0}$ for each $s \in S$. Notice that, if $S:=\left\{1_{R}\right\}$, then the definitions of $S$-multiplication and multiplication rings coincide in $R$ and if zero is an element of $S$, then $R$ is obviously an $S$-multiplication ring. To avoid this trivial case, in the rest of this paper, it is assumed that all multiplicatively closed subset don't include the zero element.

Proposition 2.4. Let $R$ be a ring and $S$ be a multiplicatively closed subset of R. Then:
(1) If $S \subseteq S^{\prime}$ are multiplicatively closed subsets of $R$ and $R$ is an $S$ multiplication ring, then $R$ is an $S^{\prime}$-multiplication ring.
(2) $R$ is an $S$-multiplication ring if and only if $R$ is an $S^{*}$-multiplication ring.

Proof. It is straightforward.
Next, we study the transfer of the $S$-multiplication property in the ring of fractions.

Proposition 2.5. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. If $R$ is an $S$-multiplication ring, then $S^{-1} R$ is a multiplication ring. The converse is true if $S$ satisfies the maximal multiple condition.

To prove Proposition 2.5, we establish the following lemma, which is a direct consequence of [4, Proposition 3].

Lemma 2.6. Let $R$ be a ring and $S_{1}$ and $S_{2}$ be two multiplicatively closed subsets of $R$. Let $\overline{S_{1}}:=\left\{\frac{s}{1} \in S_{2}^{-1} R: s \in S_{1}\right\}$ be a multiplicatively closed subset of $S_{2}^{-1} R$. Assume that $R$ is an $S_{1}$-multiplication ring. Then the following statements hold:
(1) $S_{2}^{-1} R$ is an $\overline{S_{1}}$-multiplication ring.
(2) If $S_{1} \subseteq\left(S_{2}\right)^{*}$, then $S_{2}^{-1} R$ is a multiplication ring.

Proof of Proposition 2.5. Assume that $R$ is an $S$-multiplication ring. Put $\bar{S}:=$ $\left\{\frac{s}{1} \in S^{-1} R: s \in S\right\}$. Then $S^{-1} R$ is an $\bar{S}$-multiplication ring by Lemma 2.6(1). Then $S^{-1} R$ is a multiplication ring by Lemma 2.6(2). Conversely, assume that $S$ satisfies the maximal multiple condition. Let $J \subseteq I$ be ideals of $R$. Then $S^{-1} J \subseteq S^{-1} I$ are ideals of $S^{-1} R$, therefore there is an ideal $I^{\prime}$ of $R$ such that $S^{-1} J=S^{-1}\left(I I^{\prime}\right)$. Let $x \in J$. Then there is $s_{1} \in S$ such that $s_{1} x \in I^{\prime} I$ and so $s_{1} J \subseteq I^{\prime} I$. For the same reasoning, we prove that there is $s_{2} \in S$ such that $s_{2} I^{\prime} I \subseteq J$. Put $s=s_{2} s_{1} \in S$. Then $s J \subseteq s_{2} I^{\prime} I \subseteq J$ and hence $I$ is an $S$-multiplication ideal, as desired.

It is clear that if $S$ is a multiplicatively closed subset of a ring $R$, then $\bar{S}:=S+I$ is a multiplicatively closed subset of $R / I$ for every ideal $I$ of $R$. The next result investigates the $S$-multiplication property in quotient rings.
Proposition 2.7. Let $R$ be a ring, $I$ be an ideal of $R$ and let $S$ be a multiplicatively closed subset of $R$. If $R$ is an $S$-multiplication ring, then $R / I$ is an $\bar{S}$-multiplication ring, where $\bar{S}=S+I$. The converse is true if there is $s_{0} \in S$ such that $s_{0} I=0$.

Proof. Assume that $R$ is an $S$-multiplication ring. Let $f: R \rightarrow R / I$ defined by $f(r)=r+I$ for all $r \in R$. It is clear that $f$ is a surjective ring homomorphism. Let $K \subseteq J$ be ideals of $R / I$. Then $f^{-1}(K) \subseteq f^{-1}(J)$ are ideals of $R$, so there exist $s \in S$ and an ideal $I^{\prime}$ of $R$ such that $s f^{-1}(K) \subseteq f^{-1}(J) I^{\prime} \subseteq f^{-1}(K)$. Then $f(s) K \subseteq J f\left(I^{\prime}\right) \subseteq K$. Then $J$ is an $\bar{S}$-multiplication ideal and hence $R / I$ is an $\bar{S}$-multiplication ring. Conversely, assume that there is $s_{0} \in S$ such that $s_{0} I=0$. Let $K \subseteq J$ be ideals of $R$. Then $f(K) \subseteq f(J)$ are ideals of $R / I$, so there are $s \in S$ and an ideal $L$ of $R / I$ such that $f(s) f(K) \subseteq f(J) L \subseteq f(K)$. Therefore, $f(s K) \subseteq f\left(I^{\prime} J\right) \subseteq f(K)$ with $I^{\prime}$ an ideal of $R$ containing $I$. Then $(s K+I) \subseteq\left(I^{\prime} J+I\right) \subseteq(K+I)$, that is, $s_{0} s K \subseteq s_{0} I^{\prime} J \subseteq K$. Thus $J$ is an $S$-multiplication ideal and hence $R$ is an $S$-multiplication ring.

Next, we study the transfer of the $S$-multiplication property in the direct product. It is clear that if $S_{i}$ is a multiplicatively closed subsets of a ring $R_{i}$ for all $i=1, \ldots, n$, then $S=\prod_{i=1}^{n} S_{i}$ is a multiplicatively closed subset of $R=\prod_{i=1}^{n} R_{i}$.

The following result, which is a direct consequence of [4, Theorem 5], is important enough to be designated a proposition, therefore we will remove the proof.
Proposition 2.8. Let $R_{1}, \ldots, R_{n}$ be rings and $S_{1}, \ldots, S_{n}$ be multiplicatively closed subsets of $R_{1}, \ldots, R_{n}$, respectively. Put $R=\prod_{i=1}^{n} R_{i}$ and $S=\prod_{i=1}^{n} S_{i}$ a multiplicatively closed subset of $R$. The following statements are equivalent:
(1) $R$ is an $S$-multiplication ring.
(2) $R_{i}$ is an $S_{i}$-multiplication ring for each $i=1,2, \ldots, n$.

Next, we examine conditions under which an $S$-multiplication ring $R$ is a multiplication ring for some multiplicatively closed subset $S$ of $R$.

Theorem 2.9. For a ring $R$, the following statements are equivalent:
(1) $R$ is a multiplication ring.
(2) $R$ is a $P$-multiplication ring for each prime ideal $P$ of $R$.
(3) $R$ is an $M$-multiplication ring for each maximal ideal $M$ of $R$.

Proof. (1) $\Rightarrow$ (2) It follows from Example 2.2.
$(2) \Rightarrow(3)$ It is clear.
(3) $\Rightarrow(1)$ Assume that $R$ is an $M$-multiplication ring for each maximal ideal $M$ of $R$. Let $I$ be an ideal of $R$. Then $I$ is an $M$-multiplication ideal for each
maximal ideal $M$ of $R$. Thus $I$ is a multiplication ideal by [4, Theorem 1] and hence $R$ is a multiplication ring.

Recall from [3, p. 761], that a quasi-local multiplication ring is a $P I R$. It is also clear that every Noetherian ring $R$ is an $S$-Noetherian ring for any multiplicatively closed subset $S$ of $R$.

Proposition 2.10. Let $R$ be a Noetherian ring. Then $R$ is a $P$-multiplication ring if and only if $R$ is an $(R-P)$-PIR for each prime ideal $P$ of $R$.
Proof. By Example 2.3, we only need prove that $R$ is an $(R-P)$-PIR if $R$ is a $P$-multiplication ring for each prime ideal $P$ of $R$. Assume that $R$ is a $P$-multiplication ring for each prime ideal $P$ of $R$. Then $R$ is a multiplication ring by Theorem 2.9. Therefore, $R_{P}$ is a quasi-local multiplication ring. Hence $R$ is an $(R-P)$-PIR by [5, Proposition $2(\mathrm{~g})]$.

In [5], the authors proved that a ring $R$ is a $Z P I$-ring if and only if $R$ is an $M$-PIR for each maximal ideal $M$ of $R$ and that a domain $D$ is a Dedekind domain if and only if $D$ is an $M$-PID for each maximal ideal $M$ of $D$. It is well known that every $Z P I$-ring is a multiplication ring. The following is a consequence of Proposition 2.10.

Corollary 2.11. The following statements hold:
(1) Every Noetherian multiplication ring is a ZPI ring.
(2) Every Noetherian multiplication domain is a Dedekind domain.

Proof. (1) Let $R$ be a Noetherian multiplication ring. Then by Theorem 2.9, $R$ is a Noetherian $M$-multiplication ring for each maximal ideal $M$ of $R$. Then by Proposition $2.10, R$ is an $M$-PIR for each maximal ideal $M$ of $R$. Thus $R$ is a $Z P I$-ring by [5, Corollary 13].
(2) Let $R$ be a Noetherian multiplication domain. Then by Theorem 2.9 and Proposition 2.10, $R$ is an $M$-PID for each maximal ideal $M$ of $R$ and hence $R$ is a Dedekind domain by [5, Corollary 13].

Recall from [4, Definition 2], that a module $M$ over a ring $R$ is called $S$ cyclic, where $S$ is a multiplicatively closed subset of $R$, if there exist $s \in S$ and $m \in M$ with $s M \subseteq R m \subseteq M$. If $S:=R-P$ with $P$ a prime ideal of $R$, then $M$ is called a $P$-cyclic $R$-module. They also proved by [4, Proposition 6] that if an $R$-module $M$ is a $P$-multiplication $R$-module for a prime ideal $P$ of $R$ with $M_{P} \neq 0_{P}$, then $M$ is $P$-cyclic.

Proposition 2.12. Let $R$ be a ring and $P$ be a prime ideal of $R$ such that $I_{P} \neq 0_{P}$ for each ideal $I$ of $R$. Then $R$ is a $P$-multiplication ring if and only if $R$ is an $(R-P)-P I R$.
Proof. By Example 2.3, we only need prove that $R$ is an $(R-P)$-PIR if $R$ is a $P$-multiplication ring for a prime ideal $P$ of $R$ such that $I_{P} \neq 0_{P}$ for each ideal $I$ of $R$. Let $I$ be an ideal of $R$. Then $I$ is a $P$-multiplication ideal and
$I_{P} \neq 0_{P}$. Thus by [4, Proposition 6], $I$ is $P$-cyclic, so there exist $x_{0} \notin P$ and $y \in I$ such that $x_{0} I \subseteq R y \subseteq I$. Therefore $I$ is an $(R-P)$-principal ideal and hence $R$ is an $(R-P)$-PIR.

Let $R$ be a non-Noetherian von Neumann regular ring. Then by [3, Theorem $6], R[X]$ is an almost multiplication ring (resp. an arithmetical ring). On the other hand, assume that $R[X]$ is an $S$-multiplication ring for $S:=\left\{1_{R}\right\}$, then $R[X]$ is a multiplication ring by Example 2.2(1), a contradiction by [3, p. 765]. Hence, almost multiplication rings and arithmetical rings are not $S$ multiplication rings for an arbitrary multiplicatively closed subset $S$. In what follows we characterize almost multiplication rings and arithmetical rings which are $S$-multiplication rings for an arbitrary multiplicatively closed subset $S$ of $R$.

Theorem 2.13. Let $R$ be an $S$-Noetherian ring (not necessary Noetherian for instance see [7, Remark 3.4(2)]). If $R$ is an almost multiplication (resp. an arithmetical) ring, then $R$ is an $S$-multiplication ring.

Proof. Assume that $R$ is an $S$-Noetherian almost multiplication ring. Then by [3, Theorem 1], every ideal of $R$ is locally principal. Let $I$ be an ideal of $R$. Then there are $s \in S$ and a finitely generated ideal $K$ of $R$ such that $s I \subseteq K \subseteq I$. Then $K$ is a multiplication ideal by [3, Theorem 3]. Let $J \subseteq I$ an ideal of $R$, then $s J \subseteq s I \subseteq K$. Then there is an ideal $I^{\prime}$ of $R$ such that $s J=I^{\prime} K$. Then $s^{2} J=s I^{\prime} K \subseteq s I^{\prime} I \subseteq I^{\prime} K \subseteq J$ and so $s^{2} J \subseteq\left(s I^{\prime}\right) I \subseteq J$. Then $I$ is an $S$-multiplication ideal and hence $R$ is an $S$-multiplication ring. Respectively, assume that $R$ is an $S$-Noetherian arithmetical ring. Let $I$ be an ideal of $R$, then there exist $s \in S$ and a finitely generated ideal $K$ of $R$ such that $s I \subseteq K \subseteq I$. Let $J \subseteq I$ an ideal of $R$, then $s J \subseteq s I \subseteq K$. Then there exists an ideal $I^{\prime}$ of $R$ such that $s J=I^{\prime} K$ by [13, Theorem 2]. Therefore $s^{2} J=s I^{\prime} K \subseteq s I^{\prime} I \subseteq I^{\prime} K \subseteq J$. Then $I$ is an $S$-multiplication ideal and hence $R$ is an $S$-multiplication ring.

Recall from [5, p. 4412], that each domain $D$ is $D^{*}$-Noetherian, where $D^{*}:=$ $D-\{0\}$. Then the following result is a direct consequence of Theorem 2.13.

Corollary 2.14. Every almost multiplication (resp. arithmetical) domain $D$ is a $D^{*}$-multiplication domain.

It is proved in [8, Lemma 2.6], that every Noetherian almost multiplication (resp. arithmetical) ring is a multiplication ring. In what follows we give a new proof of this result using the $S$-concept.

Corollary 2.15. Every Noetherian almost multiplication (resp. arithmetical) ring $R$ is a multiplication ring.
Proof. Assume that $R$ is a Noetherian almost multiplication (resp. arithmetical) ring. Then by [5, Proposition 12], $R$ is an $M$-Noetherian almost multiplication (resp. arithmetical) ring for all maximal ideal $M$ of $R$. Then $R$ is an
$M$-multiplication ring for each maximal ideal $M$ of $R$ by Theorem 2.13. Thus by Theorem 2.9, $R$ is a multiplication ring.

Let $I$ be an ideal of a ring $R$, denotes by $\operatorname{sat}_{M}(I):=I R_{M} \cap R$ the $(R-M)$ saturation of $I$.

Theorem 2.16. Let $R$ be an almost multiplication ring. Assume that for every finitely generated ideal $J$ of $R$, sat $_{M}(J) \neq 0_{M}$ for all maximal ideal $M$ of $R$. Then $R$ is a $P$-multiplication ring for all prime ideal $P$ of $R$ if and only if $R$ is Noetherian.

Proof. For every finitely generated ideal $J$ of $R$, put $K:=\operatorname{sat}_{M}(J)$ for all maximal ideal $M$ of $R$. Assume that $R$ is a $P$-multiplication ring for all prime ideal $P$ of $R$. Then by Theorem $2.9, R$ is a multiplication ring. Then $K$ is a multiplication ideal. Since $K_{M} \neq 0_{M}$ for all maximal ideal $M$ of $R$, then by [4, Corollary 3], $K$ is $M$-cyclic for all maximal ideal $M$ of $R$. Then there exist $x_{0} \notin M$ and $y \in K$ such that $x_{0} K \subseteq R y \subseteq K$. Then $K$ is $M$-finite for all maximal ideal $M$ of $R$. Then by [5, Proposition 2(b)], $K=(J: t)$ for some $t \notin M$. On the other hand, since $R$ is an almost multiplication ring, then by [3, Theorem 1], $R_{M}$ is a principal ideal ring, hence Noetherian for all maximal ideal $M$ of $R$. Then by [5, Proposition 2(f)], $R$ is $M$-Noetherian for all maximal ideal $M$ of $R$ and hence by [5, Proposition 12], $R$ is Noetherian. The converse follows from Theorem 2.13.

Definition 2.17. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. We say that $R$ is an $S$-arithmetical ring if every finitely generated ideal of $R$ is an $S$-multiplication ideal. If $P$ is a prime ideal of $R$, we say that $R$ is a $P$-arithmetical ring if $R$ is an $(R-P)$-arithmetical ring.

Example 2.18. Every arithmetical ring $R$ is $S$-arithmetical for any multiplicatively closed subset $S$ of $R$. The converse is true if $S \subseteq U(R)$.

The fact that if $R$ is an arithmetical ring, then $R$ is an $S$-arithmetical ring for any multiplicatively closed subset $S$ of $R$ is of course, not reversible in general, for instance see Examples 3.3 and 3.4.

Proposition 2.19. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. If $R$ is an $S$-multiplication ring, then $R$ is an $S$-arithmetical ring.

Proof. The proof is straightforward.
The converse of Proposition 2.19 is not true in general, for instance see Section 3. Next, we examine conditions under which an $S$-arithmetical ring $R$ is an $S$-multiplication for some multiplicatively closed subset of $R$.

Theorem 2.20. Let $R$ be a ring and $S$ be a multiplicatively closed subset of $R$. Suppose that $R$ is $S$-Noetherian not necessary Noetherian. Then $R$ is an $S$-arithmetical ring if and only if $R$ is an $S$-multiplication ring.

Proof. The necessary condition is given by Example 2.18. Assume that $R$ is an $S$-arithmetical ring. Let $I$ be an ideal of $R$. Then there exist $s \in S$ and a finitely generated ideal $K$ of $R$ such that $s I \subseteq K \subseteq I$. Let $J \subseteq I$ be an ideal of $R$. Then $s J \subseteq s I \subseteq K$, so there exist $s^{\prime} \in S$ and an ideal $I^{\prime}$ of $R$ such that if $s s^{\prime} J \subseteq K I^{\prime} \subseteq J$, then $s^{\prime} s^{2} J \subseteq s K I^{\prime} \subseteq s I^{\prime} I \subseteq K I^{\prime} \subseteq J$.

Put $t=s^{\prime} s^{2} \in S$, then $t J \subseteq s I^{\prime} I \subseteq J$. Then $I$ is an $S$-multiplication ideal and hence $R$ is an $S$-multiplication ring.

The following diagram summarizes some pre-mentioned implications.


- m-rings: multiplication rings.
- PIR: principal ideal rings.
- S-PIR: $S$-principal ideal rings.
- $S$-m-rings: $S$-multiplication rings.
- Black arrows are direct implications.

Let $A$ be a ring and $E$ be an $A$-module, the idealization $A \propto E$ (also called the trivial extension), introduced by Nagata in 1956 (cf. [17]) is defined as the $A$-module $A \oplus E$ with multiplication defined by $(a, e)(b, f):=(a b, a f+b e)$. It is clear that if $S$ is a multiplicatively closed subset of $A$, then $S \propto F$ is a multiplicatively closed subset of $A \propto E$ for each submodule $F$ of $E$. It is said in [6, p. 19] that for any submodule $F$ of $E,(S \propto F)^{*}=(S \propto 0)^{*}$ and that $(A \propto E)_{S \propto F} \cong(A \propto E)_{S \propto 0}$. It is easy to show that $S \propto 0$ satisfies the maximal multiple condition if $S$ satisfies the maximal multiple condition. Recall from [6, Theorem 3.2(2)] that every prime (resp. maximal) ideal of $A \propto E$ has the form $P \propto E$, where $P$ is a prime (resp. maximal) ideal of $A$. In what follows, we study the transfer of the $S$-multiplication property from the trivial rings extension to their components.

Theorem 2.21. Under the above notations.
(A) If $A \propto E$ is an $(S \propto E)$-multiplication ring, then $A$ is an $S$-multiplication ring and $E$ is an $S$-multiplication module.
(B) Assume that ann $(P)+(P E: E)=A$ for each prime ideal $P$ of $A$. Then the following statements are equivalent:
(1) $A \propto E$ is a multiplication ring.
(2) $A \propto E$ is a $P \propto E$-multiplication ring for each prime ideal $P$ of $A$.
(3) $A$ is a $P$-multiplication ring and $E$ is a $P$-multiplication module for each prime ideal $P$ of $A$.
(4) $A$ is a multiplication ring and $E$ is a multiplication module.

Proof. (A) Assume that $A \propto E$ is an $(S \propto E)$-multiplication ring. Then $0 \propto E$ is an $(S \propto E)$-multiplication ideal of $A \propto E$. Therefore $E$ is an $S$ multiplication module by [4, Theorem 3]. On the other hand, let $J \subseteq I$ be ideals of $A$, then $J \propto E \subseteq I \propto E$ are ideals of $A \propto E$. Then there exists $(s, e) \in S \propto E$ such that $(s, e) J \propto E \subseteq(J \propto E: I \propto E) I \propto E$. Or by [1, Lemma 1], $(J \propto E: I \propto E)=(J: I) \propto E$. Then $s J \subseteq(J: I) I$. Thus $I$ is an $S$-multiplication ideal and hence $A$ is an $S$-multiplication ring.
(B) $(1) \Rightarrow(2)$ It follows from example 2.2 .
$(2) \Rightarrow(3)$ It follows from (A).
$(3) \Rightarrow(4)$ It follows from Theorem 2.9 and [4, Theorem 1].
$(4) \Rightarrow(1)$ It follows from $[2$, Theorem 11(1)].
The converse of Theorem 2.21(A) is not true in general as shown by the following example.

Example 2.22. Let $(A, P)$ be a local multiplication ring ( $P$ proper) and $E=A / P$ be an $A$-module such that $E P=0$. Then clearly $A$ is a $\left\{1_{R}\right\}$ multiplication ring and by [8, Proposition 2.1], $E$ is a $\left\{1_{A}\right\}$-multiplication module. Suppose that $A \propto E$ is a $\left\{1_{A}\right\} \propto E$-multiplication ring. Then by Proposition 2.4(2), $A \propto E$ is a $\left\{1_{A}\right\} \propto 0$-multiplication ring. Therefore $A \propto E$ is multiplication, a contradiction by [15, Example 2.6].

Let $f: A \rightarrow B$ be a ring homomorphism and let $J$ be an ideal of $B$. The amalgamated algebra of $A$ with $B$ along $J$ with respect to $f$ is the subring of $A \times B$ given by: $A \bowtie^{f} J:=\{(a, f(a)+j): a \in A, j \in J\}$. This construction is introduced and studied by D'Anna, Finocchiaro and Fontana in [9,10]. Notice that if $B:=A, f:=i d_{A}$ and $J:=I$ an ideal of $A$, then $A \bowtie^{f} J=A \bowtie I$. It is clear that if $S$ is a multiplicatively closed subset of $A$, then $S^{\prime}:=\{(s, f(s)): s \in$ $S\}$ is a multiplicatively closed subset of $A \bowtie^{f} J$ and $f(S)$ is a multiplicatively closed subset of $B$. We examine conditions under which $A \bowtie^{f} J$ is an $S^{\prime}$ multiplication ring.

Theorem 2.23. Under the above notation. Assume that $J$ is a nonzero proper ideal of $B$. If $A \bowtie^{f} J$ is an $S^{\prime}$-multiplication ring, then $A$ is an $S$-multiplication ring and $f(A)+J$ is an $f(S)$-multiplication ring. The converse is true if $J$ is generated by an idempotent.

Before proving Theorem 2.23, we establish the following lemma.
Lemma 2.24. Let $f: A \rightarrow B$ be a ring homomorphism and let $J$ be a nonzero proper ideal of $B$. Assume that $J$ is finitely generated by an idempotent $J=\langle e\rangle$, $\left.e^{2}=e\right)$. Then

$$
\begin{aligned}
& \alpha: A \bowtie^{f} J \rightarrow A \times \frac{\frac{f(A)+J}{a n n(J)}}{(a, f(a)+j) \mapsto\left(a, \frac{f(a)+j}{}\right)}
\end{aligned}
$$

is a ring isomorphism.
Proof. It is easy to show that $\alpha$ is well defined and is a ring homomorphism. Let $(a, \overline{f(b)+k}) \in A \times \frac{f(A)+J}{\operatorname{ann}(J)}$, we have $\alpha(a, f(a)+e(f(b)+k-f(a)))=$ $(a, \overline{f(b)+k})$. Indeed, $\overline{f(a)+e(f(b)+k-f(a))}=\overline{f(a)}+\bar{e}(\overline{f(b)+k})-\bar{e} \overline{f(a)}$. Since, $(e-1) J=e B e-B e=0$, then $\bar{e}=\overline{1}$. Therefore, $\overline{f(a)}+\bar{e} \overline{f(b)+k}-$ $\bar{e} \overline{f(a)}=\overline{f(b)+k}$, and hence $\alpha$ is surjective. Let $(a, f(a)+j) \in \operatorname{Ker}(\alpha)$. Then $(a, \overline{f(a)+j})=0$ so $a=0=\overline{f(a)+j}$, therefore $j \in J \cap \operatorname{ann}(J)=(0)$ and hence $\alpha$ is injective. Thus $\alpha$ is a ring isomorphism.

Proof of Theorem 2.23. (1) Let $P_{A}: A \bowtie^{f} J \rightarrow A$ be the natural projection of $A \bowtie^{f} J \subseteq A \times B$ into $A$ and $p: A \bowtie^{f} J \rightarrow f(A)+J$ be the surjective ring homomorphism defined by $p((a, f(a)+j))=f(a)+j$ for all $a \in A$ and $j \in J$. Assume that $A \bowtie^{f} J$ is an $S^{\prime}$-multiplication ring. Then $P_{A}\left(A \bowtie^{f}\right.$ $J)=A$ is an $S$-multiplication ring and $p\left(A \bowtie^{f} J\right)=f(A)+J$ is an $f(S)$ multiplication ring. Conversely, assume that $J$ is generated by an idempotent. By Proposition 2.7, $(f(A)+J) / \operatorname{ann}(J)$ is an $\overline{f(S)}$-multiplication ring, where $\overline{f(S)}:=f(S)+\operatorname{ann}(J)$. Therefore $A \times(f(A)+J) / \operatorname{ann}(J)$ is an $S \times \overline{f(S)}$ multiplication ring by Proposition 2.8 and hence $A \bowtie^{f} J$ is an $S^{\prime}$-multiplication ring by Proposition 2.4 and Lemma 2.24.

For a commutative ring $A$ and an ideal $I$ of $A$, the amalgamated duplication of $A$ along $I$ is the subring of $A \times A$ given by

$$
A \bowtie I:=\{(a, a+i): a \in A, i \in I\} .
$$

This ring was introduced and studied by D'Anna and Fontana in [11]. Notice that if $B:=A, f:=i d_{A}$ and $J:=I$ is an ideal of $A$, then $A \bowtie^{f} J=A \bowtie I$. The following result is a direct consequence of Theorem 2.23. Notice that $S^{\prime}:=\{(s, s): s \in S\}$ is a multiplicatively closed subset of $A \bowtie I$ for each multiplicatively closed subset $S$ of $A$.
Corollary 2.25. Let $A$ be a ring, $I$ a nonzero proper ideal of $A$ and $S$ a multiplicatively closed subset of $A$. If $A \bowtie I$ is an $S^{\prime}$-multiplication ring, then $A$ is an $S$-multiplication ring. The converse is true if $I$ is generated by an idempotent.

Example 2.26. We keep the notation of Corollary 2.25. Let $A:=\mathbb{Z}_{6}, S:=$ $\{\overline{1}, \overline{3}\}$ a multiplicatively closed subset of $A$. It is well known that if $A$ is a multiplication ring, then $A$ is an $S$-multiplication ring by Example 2.2. Let
$I:=(\overline{4})$ be a proper ideal of $A$ generated by an idempotent of $A$. Then by Corollary 2.25, $A \bowtie I$ is an $S^{\prime}$-multiplication ring, where $S^{\prime}:=\{(s, s): s \in S\}$.
Proposition 2.27. We keep the notations of Theorem 2.23. Assume there exists $s \in S$ such that $f(s) J=0$ for example $S \cap \operatorname{Ker}(f) \neq \emptyset$. Then $A \bowtie^{f} J$ is an $S^{\prime}$-multiplication ring if $A$ is a multiplication ring.
Proof. Assume that $A$ is a multiplication ring. Then by [9, Proposition 5.1(3)], $A \bowtie^{f} J / 0 \times J \cong A$ is a multiplication ring. Then by Example 2.2, $A \bowtie^{f} J / 0 \times J$ is an $\left(S^{\prime}+0 \times J\right)$-multiplication ring. Let $s \in S$ such that $f(s) J=0$. Then $(s, f(s)) 0 \times J=0$ and by Proposition 2.7, $A \bowtie^{f} J$ is an $S^{\prime}$-multiplication ring.

## 3. More examples

In this section, the main objective is to provide some original examples to illustrate some of the results previously stated. We begin by providing an example of an $S$-multiplication ring that is not multiplication.

Example 3.1. Let $(A, P)$ be a local multiplication ring, $E \neq 0$ be an $A$-module such that $E P=0$ (for instance $E=A / P$ ) and $S$ be a multiplicatively closed subset of $A$ such that $S \cap P \neq \emptyset$. Then:
(1) $A \propto E$ is an $S \propto E$-multiplication ring.
(2) $A \propto E$ is not a multiplication ring.

Proof. (1) By [6, Theorem 3.1], we have $(A \propto E / 0 \propto E) \cong A$ is a multiplication ring and hence an $(S \propto E+0 \propto E)$-multiplication ring. Let $s \in S \cap P$. Then $(s, 0) 0 \propto E=0$. Therefore $A \propto E$ is an $S \propto E$-multiplication ring by Proposition 2.7.
(2) It follows from [15, Example 2.6].

Next, we give an example of an $S$-arithmetical ring that is not arithmetical.
Example 3.2. Let $A$ be an arithmetical domain, let $B$ be a domain, let $J$ be a nonzero proper ideal of $B$, let $f: A \rightarrow B$ be a non injective ring homomorphism, let $S$ be a multiplicatively closed subset of $A$ such that $\emptyset \neq S \cap \operatorname{Ker}(f)$, and let $R:=A \bowtie^{f} J$ and $S^{\prime}:=\{(s, f(s)): s \in S\}$. Then:
(1) $R$ is an $S^{\prime}$-arithmetical ring.
(2) $R$ is not an arithmetical ring.

Proof. (1) Notice that it is easy to show that Proposition 2.7 is true for the $S$-arithmetical property. By [9, Proposition 5.1(3)], $R / 0 \times J \cong A$ is an arithmetical ring. Then by Example 2.18, $R / 0 \times J$ is an $S^{\prime}+0 \times J$-arithmetical ring. Let $s \in S \cap \operatorname{Ker}(f)$. Then $(s, f(s)) 0 \times J=0$. So by Proposition 2.7 for the $S$-arithmetical property, $R$ is an $S^{\prime}$-arithmetical ring.
(2) It follows from [14, Theorem 2.9].

Next, we give some examples of $S$-arithmetical rings that are not $S$-multiplication.

Example 3.3. Let $A_{0}$ be a non Noetherian von Neumann regular ring, let $A:=A_{0}[X]$, let $S$ be a multiplicatively closed subset of $A$, let $R:=A \times A$ and let $S^{\prime}:=\left\{1_{A}\right\} \times S$. Then:
(1) $R$ is an $S^{\prime}$-arithmetical ring.
(2) $R$ is not an $S^{\prime}$-multiplication ring.

Proof. (1) By [3, Theorem 6], $A$ is arithmetical. Then by Example 2.18 and Proposition 2.7 for the $S$-arithmetical property, $R$ is an $S^{\prime \prime}$-arithmetical ring.
(2) Assume that $R$ is an $S^{\prime}$-multiplication ring. Then $A$ is a multiplication ring by Proposition 2.8, a contradiction by [3, p. 765].

Example 3.4. Let $A:=\mathbb{Z}$, the ring of integers, let $E:=\mathbb{Q}$ the field of rational numbers, let $R:=A \propto E$ and $S:=\left\{1_{A}\right\} \propto E$ be a multiplicatively closed subset of $R$. Then:
(1) $R$ is an $S$-arithmetical ring.
(2) $R$ is not an $S$-multiplication ring.

Proof. (1) By [16, Theorem 9], $R$ is an arithmetical ring and hence an $S$ arithmetical ring by Example 2.18.
(2) Assume that $R$ is an $S$-multiplication ring. Then by Proposition 2.4(2), $R$ is a $\left\{1_{A}\right\} \propto 0$-multiplication ring. Then $0 \propto \mathbb{Q}$ is a $\left\{1_{A}\right\} \propto 0$-multiplication ideal. Then $Q$ is a multiplication $\mathbb{Z}$-module by [4, Theorem 3], a contradiction.

## References

[1] M. M. Ali, Multiplication modules and homogeneous idealization, Beiträge Algebra Geom. 47 (2006), no. 1, 249-270.
[2] M. M. Ali, Idealization and theorems of D. D. Anderson, Comm. Algebra 34 (2006), no. 12, 4479-4501. https://doi.org/10.1080/00927870600938837
[3] D. D. Anderson, Multiplication ideals, multiplication rings, and the ring $R(X)$, Canadian J. Math. 28 (1976), no. 4, 760-768. https://doi.org/10.4153/CJM-1976-072-1
[4] D. D. Anderson, T. Arabaci, U. Tekir, and S. Koç, On S-multiplication modules, Comm. Algebra 48 (2020), no. 8, 3398-3407. https://doi.org/10.1080/00927872. 2020.1737873
[5] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
[6] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
[7] D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512. https://doi.org/10.4134/JKMS.j170797
[8] M. Chhiti and S. Moindze, Some commutative rings defined by multiplication likeconditions, Bull. Korean Math. Soc. 59 (2022), no. 2, 397-405. https://doi.org/10. 4134/BKMS.b210293
[9] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
[10] M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
[11] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/ S0219498807002326
[12] L. Fuchs, Über die Ideale arithmetischer Ringe, Comment. Math. Helv. 23 (1949), 334341. https://doi.org/10.1007/BF02565607
[13] C. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar. 17 (1966), 115-123. https://doi.org/10.1007/BF02020446
[14] M. Kabbour and N. Mahdou, Arithmetical property in amalgamated algebras along an ideal, Palest. J. Math. 3 (2014), Special issue, 395-399.
[15] K. Louartiti and N. Mahdou, Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math. 14 (2012), no. 1, 119-125.
[16] A. Mimouni, M. Kabbour, and N. Mahdou, Trivial ring extensions defined by arithmetical-like properties, Comm. Algebra 41 (2013), no. 12, 4534-4548. https: //doi.org/10.1080/00927872.2012.705932
[17] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley \& Sons, Inc.), New York, 1962.

Mohamed Chhiti
Modelling and Mathematical Structures Laboratory
Faculty of Economics and Social Sciences of Fez
University S.M. Ben Abdellah Fez
Morocco
Email address: chhiti.med@hotmail.com
Soibri Moindze
Modelling and Mathematical Structures Laboratory
Department of Mathematics
Faculty of Science and Technology of Fez
Box 2202, University S.M. Ben Abdellah Fez
Morocco
Email address: moindzesoibri@gmail.com


[^0]:    Received January 18, 2022; Revised November 10, 2022; Accepted December 12, 2022.
    2010 Mathematics Subject Classification. 13A15, 13F10.
    Key words and phrases. Multiplication ideals, $S$-multiplication ideal, multiplication rings, almost multiplication rings, arithmetical rings, $S$-multiplication rings, $S$-arithmetical rings, trivial ring extension, amalgamated algebra along an ideal, amalgamated duplication.

