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ON S-MULTIPLICATION RINGS

Mohamed Chhiti and Soibri Moindze

Abstract. Let R be a commutative ring with identity and S be a multi-

plicatively closed subset of R. In this article we introduce a new class of

ring, called S-multiplication rings which are S-versions of multiplication
rings. An R-module M is said to be S-multiplication if for each submod-

ule N of M , sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for
instance [4, Definition 1]). An ideal I of R is called S-multiplication if

I is an S-multiplication R-module. A commutative ring R is called an

S-multiplication ring if each ideal of R is S-multiplication. We character-
ize some special rings such as multiplication rings, almost multiplication

rings, arithmetical ring, and S-PIR. Moreover, we generalize some prop-

erties of multiplication rings to S-multiplication rings and we study the
transfer of this notion to various context of commutative ring extensions

such as trivial ring extensions and amalgamated algebras along an ideal.

1. Introduction

Throughout this paper all rings are commutative with 1 and all modules are
unital. Recall that R is said to be a PIR (principal ideal ring) if every ideal
of R is principal. Anderson and Dumitrescu introduced later in their study
of S-Noetherian rings in [5], the concept of S-PIR. An ideal I of R is said
to be S-finite (resp. S-principal) if there are s ∈ S and a finitely generated
(resp. a principal) ideal K of R such that sI ⊆ K ⊆ I. We say that R is
said to be an S-Noetherian ring (resp. an S-PIR) if each ideal of R is S-finite
(resp. S-principal). Clearly, every PIR is an S-PIR for any multiplicatively
closed subset S. Recall that an ideal I of R is called a multiplication ideal
if for each ideal J of R contained in I, there is an ideal I ′ of R such that
J = II ′. We say that R is said to be a multiplication ring if every ideal of R
is multiplication and R is said to be an almost multiplication ring if RP is a
multiplication ring for all maximal ideal P of R (for instance see [3]). It is well
known that every localization of a multiplication ring is still a multiplication
ring. Consequently, it is easy to show that every multiplication ring is an

Received January 18, 2022; Revised November 10, 2022; Accepted December 12, 2022.
2010 Mathematics Subject Classification. 13A15, 13F10.
Key words and phrases. Multiplication ideals, S-multiplication ideal, multiplication rings,

almost multiplication rings, arithmetical rings, S-multiplication rings, S-arithmetical rings,
trivial ring extension, amalgamated algebra along an ideal, amalgamated duplication.

©2023 Korean Mathematical Society

327



328 M. CHHITI AND S. MOINDZE

almost multiplication ring but the converse is not true in general (for instance
see [3, p. 765]). Recall from [12, 13], that R is said to be arithmetical if every
finitely generated ideal of R is locally principal equivalently that every finitely
generated ideal is multiplication (cf. [3, Theorem 3]). It is proved in [8, Lemma
2.6] that every almost multiplication ring is arithmetical but the converse is not
true in general (see for instance [8, Example 2.7(2)]. The following diagram of
implications summarizes the relation between the prementioned class of rings

multiplication ⇒ almost multiplication ⇒ arithmetical.

Recently, in [4], the authors introduced and studied the concept of S-multi-
plication modules. An R-module M is said to be S-multiplication if for each
submodule N of M there are s ∈ S and an ideal I ′ of R such that sN ⊆
MI ′ ⊆ N , in this case we can take I ′ := (N : M). We say that an ideal
I of R is an S-multiplication ideal if I is an S-multiplication R-module. We
say that R is an S-multiplication ring if each ideal of R is S-multiplication.
Our goal is to study S-multiplication rings. Moreover, to examine conditions
under which an S-multiplication ring R is a multiplication ring or an S-PIR
for some multiplicatively closed subset S of R, we study the transfer of the S-
multiplication property in the trivial ring extension and amalgamated algebras
along an ideal, respectively. In Section 3, we provides some original class of
rings satisfying the S-multiplication property.

2. Main results

We begin this section by the definition of our S-version.

Definition 2.1. Let R be a ring and S be a multiplicatively closed subset
of R. We say that an ideal I of R is an S-multiplication ideal if I is an S-
multiplication R-module. We say that R is an S-multiplication ring if each
ideal of R is S-multiplication. If P is a prime ideal of R, we say that R is a
P -multiplication ring if R is an (R− P )-multiplication ring.

Example 2.2. Every multiplication ring R is an S-multiplication ring for any
multiplicatively closed subset S of R. The converse is true if S ⊆ U(R), where
U(R) is the group of all units of R.

The fact that multiplication rings are S-multiplication rings for any multi-
plicatively closed subset S is not reversible in general, see for instance Example
3.1.

Example 2.3. Let R be a ring and S be a multiplicatively closed subset of R.
If R is an S-PIR, then R is an S-multiplication ring.

Proof. Let R be an S-PIR and let I be an ideal of R. Then there are s ∈ S
and a principal ideal K of R such that sI ⊆ K ⊆ I. Let J ⊆ I an ideal of R.
Then sJ ⊆ sI ⊆ K. Thus there is an ideal I ′ of R such that sJ = I ′K since K
is multiplication (since K is principal by [3, Theorem 3]). Then s2J = sI ′K ⊆
sI ′I ⊆ I ′K ⊆ J . Then I is an S-multiplication ideal, as desired. □
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Let S be a multiplicatively closed subset of a ring R. The saturation of S
denoted by S∗ is defined as follows: S∗ := {x ∈ R : ∃x0 ∈ R, xx0 ∈ S}. S is
said to be saturated if S = S∗. Notice that we always have S ⊆ S∗. We say
that S satisfies the maximal multiple condition if there exists an s0 ∈ S such
that s | s0 for each s ∈ S. Notice that, if S := {1R}, then the definitions of
S-multiplication and multiplication rings coincide in R and if zero is an element
of S, then R is obviously an S-multiplication ring. To avoid this trivial case,
in the rest of this paper, it is assumed that all multiplicatively closed subset
don’t include the zero element.

Proposition 2.4. Let R be a ring and S be a multiplicatively closed subset of
R. Then:

(1) If S ⊆ S′ are multiplicatively closed subsets of R and R is an S-
multiplication ring, then R is an S′-multiplication ring.

(2) R is an S-multiplication ring if and only if R is an S∗-multiplication
ring.

Proof. It is straightforward. □

Next, we study the transfer of the S-multiplication property in the ring of
fractions.

Proposition 2.5. Let R be a ring and S be a multiplicatively closed subset of
R. If R is an S-multiplication ring, then S−1R is a multiplication ring. The
converse is true if S satisfies the maximal multiple condition.

To prove Proposition 2.5, we establish the following lemma, which is a direct
consequence of [4, Proposition 3].

Lemma 2.6. Let R be a ring and S1 and S2 be two multiplicatively closed
subsets of R. Let S1 := { s

1 ∈ S−1
2 R : s ∈ S1} be a multiplicatively closed subset

of S−1
2 R. Assume that R is an S1-multiplication ring. Then the following

statements hold:

(1) S−1
2 R is an S1-multiplication ring.

(2) If S1 ⊆ (S2)
∗, then S−1

2 R is a multiplication ring.

Proof of Proposition 2.5. Assume that R is an S-multiplication ring. Put S :=
{ s
1 ∈ S−1R : s ∈ S}. Then S−1R is an S-multiplication ring by Lemma 2.6(1).

Then S−1R is a multiplication ring by Lemma 2.6(2). Conversely, assume that
S satisfies the maximal multiple condition. Let J ⊆ I be ideals of R. Then
S−1J ⊆ S−1I are ideals of S−1R, therefore there is an ideal I ′ of R such that
S−1J = S−1(II ′). Let x ∈ J . Then there is s1 ∈ S such that s1x ∈ I ′I and
so s1J ⊆ I ′I. For the same reasoning, we prove that there is s2 ∈ S such
that s2I

′I ⊆ J . Put s = s2s1 ∈ S. Then sJ ⊆ s2I
′I ⊆ J and hence I is an

S-multiplication ideal, as desired. □



330 M. CHHITI AND S. MOINDZE

It is clear that if S is a multiplicatively closed subset of a ring R, then
S := S + I is a multiplicatively closed subset of R/I for every ideal I of R.
The next result investigates the S-multiplication property in quotient rings.

Proposition 2.7. Let R be a ring, I be an ideal of R and let S be a multi-
plicatively closed subset of R. If R is an S-multiplication ring, then R/I is an
S-multiplication ring, where S = S + I. The converse is true if there is s0 ∈ S
such that s0I = 0.

Proof. Assume that R is an S-multiplication ring. Let f : R → R/I defined by
f(r) = r+ I for all r ∈ R. It is clear that f is a surjective ring homomorphism.
Let K ⊆ J be ideals of R/I. Then f−1(K) ⊆ f−1(J) are ideals of R, so there
exist s ∈ S and an ideal I ′ of R such that sf−1(K) ⊆ f−1(J)I ′ ⊆ f−1(K).
Then f(s)K ⊆ Jf(I ′) ⊆ K. Then J is an S-multiplication ideal and hence
R/I is an S-multiplication ring. Conversely, assume that there is s0 ∈ S such
that s0I = 0. Let K ⊆ J be ideals of R. Then f(K) ⊆ f(J) are ideals of R/I,
so there are s ∈ S and an ideal L of R/I such that f(s)f(K) ⊆ f(J)L ⊆ f(K).
Therefore, f(sK) ⊆ f(I ′J) ⊆ f(K) with I ′ an ideal of R containing I. Then
(sK + I) ⊆ (I ′J + I) ⊆ (K + I), that is, s0sK ⊆ s0I

′J ⊆ K. Thus J is an
S-multiplication ideal and hence R is an S-multiplication ring. □

Next, we study the transfer of the S-multiplication property in the direct
product. It is clear that if Si is a multiplicatively closed subsets of a ring Ri

for all i = 1, . . . , n, then S =
∏n

i=1 Si is a multiplicatively closed subset of
R =

∏n
i=1 Ri.

The following result, which is a direct consequence of [4, Theorem 5], is
important enough to be designated a proposition, therefore we will remove the
proof.

Proposition 2.8. Let R1, . . . , Rn be rings and S1, . . . , Sn be multiplicatively
closed subsets of R1, . . . , Rn, respectively. Put R =

∏n
i=1 Ri and S =

∏n
i=1 Si

a multiplicatively closed subset of R. The following statements are equivalent:

(1) R is an S-multiplication ring.
(2) Ri is an Si-multiplication ring for each i = 1, 2, . . . , n.

Next, we examine conditions under which an S-multiplication ring R is a
multiplication ring for some multiplicatively closed subset S of R.

Theorem 2.9. For a ring R, the following statements are equivalent:

(1) R is a multiplication ring.
(2) R is a P -multiplication ring for each prime ideal P of R.
(3) R is an M -multiplication ring for each maximal ideal M of R.

Proof. (1) ⇒ (2) It follows from Example 2.2.
(2) ⇒ (3) It is clear.
(3) ⇒ (1) Assume that R is an M -multiplication ring for each maximal ideal

M of R. Let I be an ideal of R. Then I is an M -multiplication ideal for each
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maximal ideal M of R. Thus I is a multiplication ideal by [4, Theorem 1] and
hence R is a multiplication ring. □

Recall from [3, p. 761], that a quasi-local multiplication ring is a PIR. It
is also clear that every Noetherian ring R is an S-Noetherian ring for any
multiplicatively closed subset S of R.

Proposition 2.10. Let R be a Noetherian ring. Then R is a P -multiplication
ring if and only if R is an (R− P )-PIR for each prime ideal P of R.

Proof. By Example 2.3, we only need prove that R is an (R − P )-PIR if R
is a P -multiplication ring for each prime ideal P of R. Assume that R is a
P -multiplication ring for each prime ideal P of R. Then R is a multiplication
ring by Theorem 2.9. Therefore, RP is a quasi-local multiplication ring. Hence
R is an (R− P )-PIR by [5, Proposition 2(g)]. □

In [5], the authors proved that a ring R is a ZPI-ring if and only if R is an
M -PIR for each maximal ideal M of R and that a domain D is a Dedekind
domain if and only if D is an M -PID for each maximal ideal M of D. It is
well known that every ZPI-ring is a multiplication ring. The following is a
consequence of Proposition 2.10.

Corollary 2.11. The following statements hold:

(1) Every Noetherian multiplication ring is a ZPI ring.
(2) Every Noetherian multiplication domain is a Dedekind domain.

Proof. (1) Let R be a Noetherian multiplication ring. Then by Theorem 2.9,
R is a Noetherian M -multiplication ring for each maximal ideal M of R. Then
by Proposition 2.10, R is an M -PIR for each maximal ideal M of R. Thus R
is a ZPI-ring by [5, Corollary 13].

(2) Let R be a Noetherian multiplication domain. Then by Theorem 2.9 and
Proposition 2.10, R is an M -PID for each maximal ideal M of R and hence R
is a Dedekind domain by [5, Corollary 13]. □

Recall from [4, Definition 2], that a module M over a ring R is called S-
cyclic, where S is a multiplicatively closed subset of R, if there exist s ∈ S and
m ∈ M with sM ⊆ Rm ⊆ M . If S := R − P with P a prime ideal of R, then
M is called a P -cyclic R-module. They also proved by [4, Proposition 6] that if
an R-module M is a P -multiplication R-module for a prime ideal P of R with
MP ̸= 0P , then M is P -cyclic.

Proposition 2.12. Let R be a ring and P be a prime ideal of R such that
IP ̸= 0P for each ideal I of R. Then R is a P -multiplication ring if and only
if R is an (R− P )-PIR.

Proof. By Example 2.3, we only need prove that R is an (R − P )-PIR if R is
a P -multiplication ring for a prime ideal P of R such that IP ̸= 0P for each
ideal I of R. Let I be an ideal of R. Then I is a P -multiplication ideal and
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IP ̸= 0P . Thus by [4, Proposition 6], I is P -cyclic, so there exist x0 /∈ P and
y ∈ I such that x0I ⊆ Ry ⊆ I. Therefore I is an (R − P )-principal ideal and
hence R is an (R− P )-PIR. □

Let R be a non-Noetherian von Neumann regular ring. Then by [3, Theorem
6], R[X] is an almost multiplication ring (resp. an arithmetical ring). On
the other hand, assume that R[X] is an S-multiplication ring for S := {1R},
then R[X] is a multiplication ring by Example 2.2(1), a contradiction by [3,
p. 765]. Hence, almost multiplication rings and arithmetical rings are not S-
multiplication rings for an arbitrary multiplicatively closed subset S. In what
follows we characterize almost multiplication rings and arithmetical rings which
are S-multiplication rings for an arbitrary multiplicatively closed subset S of
R.

Theorem 2.13. Let R be an S-Noetherian ring (not necessary Noetherian for
instance see [7, Remark 3.4(2)]). If R is an almost multiplication (resp. an
arithmetical) ring, then R is an S-multiplication ring.

Proof. Assume that R is an S-Noetherian almost multiplication ring. Then
by [3, Theorem 1], every ideal of R is locally principal. Let I be an ideal of
R. Then there are s ∈ S and a finitely generated ideal K of R such that
sI ⊆ K ⊆ I. Then K is a multiplication ideal by [3, Theorem 3]. Let J ⊆ I
an ideal of R, then sJ ⊆ sI ⊆ K. Then there is an ideal I ′ of R such that
sJ = I ′K. Then s2J = sI ′K ⊆ sI ′I ⊆ I ′K ⊆ J and so s2J ⊆ (sI ′)I ⊆ J .
Then I is an S-multiplication ideal and hence R is an S-multiplication ring.
Respectively, assume that R is an S-Noetherian arithmetical ring. Let I be
an ideal of R, then there exist s ∈ S and a finitely generated ideal K of R
such that sI ⊆ K ⊆ I. Let J ⊆ I an ideal of R, then sJ ⊆ sI ⊆ K. Then
there exists an ideal I ′ of R such that sJ = I ′K by [13, Theorem 2]. Therefore
s2J = sI ′K ⊆ sI ′I ⊆ I ′K ⊆ J . Then I is an S-multiplication ideal and hence
R is an S-multiplication ring. □

Recall from [5, p. 4412], that each domain D is D∗-Noetherian, where D∗ :=
D − {0}. Then the following result is a direct consequence of Theorem 2.13.

Corollary 2.14. Every almost multiplication (resp. arithmetical) domain D is
a D∗-multiplication domain.

It is proved in [8, Lemma 2.6], that every Noetherian almost multiplication
(resp. arithmetical) ring is a multiplication ring. In what follows we give a new
proof of this result using the S-concept.

Corollary 2.15. Every Noetherian almost multiplication (resp. arithmetical)
ring R is a multiplication ring.

Proof. Assume that R is a Noetherian almost multiplication (resp. arithmeti-
cal) ring. Then by [5, Proposition 12], R is an M -Noetherian almost multipli-
cation (resp. arithmetical) ring for all maximal ideal M of R. Then R is an
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M -multiplication ring for each maximal ideal M of R by Theorem 2.13. Thus
by Theorem 2.9, R is a multiplication ring. □

Let I be an ideal of a ring R, denotes by satM (I) := IRM ∩R the (R−M)-
saturation of I.

Theorem 2.16. Let R be an almost multiplication ring. Assume that for every
finitely generated ideal J of R, satM (J) ̸= 0M for all maximal ideal M of R.
Then R is a P -multiplication ring for all prime ideal P of R if and only if R
is Noetherian.

Proof. For every finitely generated ideal J of R, put K := satM (J) for all
maximal ideal M of R. Assume that R is a P -multiplication ring for all prime
ideal P of R. Then by Theorem 2.9, R is a multiplication ring. Then K is a
multiplication ideal. Since KM ̸= 0M for all maximal ideal M of R, then by
[4, Corollary 3], K is M -cyclic for all maximal ideal M of R. Then there exist
x0 /∈ M and y ∈ K such that x0K ⊆ Ry ⊆ K. Then K is M -finite for all
maximal ideal M of R. Then by [5, Proposition 2(b)], K = (J : t) for some
t /∈ M . On the other hand, since R is an almost multiplication ring, then by
[3, Theorem 1], RM is a principal ideal ring, hence Noetherian for all maximal
ideal M of R. Then by [5, Proposition 2(f)], R is M -Noetherian for all maximal
ideal M of R and hence by [5, Proposition 12], R is Noetherian. The converse
follows from Theorem 2.13. □

Definition 2.17. Let R be a ring and S be a multiplicatively closed subset of
R. We say that R is an S-arithmetical ring if every finitely generated ideal of
R is an S-multiplication ideal. If P is a prime ideal of R, we say that R is a
P -arithmetical ring if R is an (R− P )-arithmetical ring.

Example 2.18. Every arithmetical ring R is S-arithmetical for any multi-
plicatively closed subset S of R. The converse is true if S ⊆ U(R).

The fact that if R is an arithmetical ring, then R is an S-arithmetical ring for
any multiplicatively closed subset S of R is of course, not reversible in general,
for instance see Examples 3.3 and 3.4.

Proposition 2.19. Let R be a ring and S be a multiplicatively closed subset
of R. If R is an S-multiplication ring, then R is an S-arithmetical ring.

Proof. The proof is straightforward. □

The converse of Proposition 2.19 is not true in general, for instance see
Section 3. Next, we examine conditions under which an S-arithmetical ring R
is an S-multiplication for some multiplicatively closed subset of R.

Theorem 2.20. Let R be a ring and S be a multiplicatively closed subset of
R. Suppose that R is S-Noetherian not necessary Noetherian. Then R is an
S-arithmetical ring if and only if R is an S-multiplication ring.
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Proof. The necessary condition is given by Example 2.18. Assume that R is
an S-arithmetical ring. Let I be an ideal of R. Then there exist s ∈ S and a
finitely generated ideal K of R such that sI ⊆ K ⊆ I. Let J ⊆ I be an ideal
of R. Then sJ ⊆ sI ⊆ K, so there exist s′ ∈ S and an ideal I ′ of R such that
if ss′J ⊆ KI ′ ⊆ J , then s′s2J ⊆ sKI ′ ⊆ sI ′I ⊆ KI ′ ⊆ J .

Put t = s′s2 ∈ S, then tJ ⊆ sI ′I ⊆ J . Then I is an S-multiplication ideal
and hence R is an S-multiplication ring. □

The following diagram summarizes some pre-mentioned implications.

Arithmetical-rings

S-arithmetical rings

m-rings

PIR

S-m-rings

S-PIR

• m-rings: multiplication rings.
• PIR: principal ideal rings.
• S-PIR: S-principal ideal rings.
• S-m-rings: S-multiplication rings.
• Black arrows are direct implications.
Let A be a ring and E be an A-module, the idealization A ∝ E (also called

the trivial extension), introduced by Nagata in 1956 (cf. [17]) is defined as the
A-module A ⊕ E with multiplication defined by (a, e)(b, f) := (ab, af + be).
It is clear that if S is a multiplicatively closed subset of A, then S ∝ F is a
multiplicatively closed subset of A ∝ E for each submodule F of E. It is said
in [6, p. 19] that for any submodule F of E, (S ∝ F )∗ = (S ∝ 0)∗ and that
(A ∝ E)S∝F

∼= (A ∝ E)S∝0. It is easy to show that S ∝ 0 satisfies the maximal
multiple condition if S satisfies the maximal multiple condition. Recall from
[6, Theorem 3.2(2)] that every prime (resp. maximal) ideal of A ∝ E has the
form P ∝ E, where P is a prime (resp. maximal) ideal of A. In what follows,
we study the transfer of the S-multiplication property from the trivial rings
extension to their components.

Theorem 2.21. Under the above notations.
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(A) If A∝E is an (S ∝ E)-multiplication ring, then A is an S-multiplication
ring and E is an S-multiplication module.

(B) Assume that ann(P )+(PE : E) = A for each prime ideal P of A. Then
the following statements are equivalent:

(1) A ∝ E is a multiplication ring.
(2) A ∝ E is a P ∝ E-multiplication ring for each prime ideal P of A.
(3) A is a P -multiplication ring and E is a P -multiplication module for

each prime ideal P of A.
(4) A is a multiplication ring and E is a multiplication module.

Proof. (A) Assume that A ∝ E is an (S ∝ E)-multiplication ring. Then
0 ∝ E is an (S ∝ E)-multiplication ideal of A ∝ E. Therefore E is an S-
multiplication module by [4, Theorem 3]. On the other hand, let J ⊆ I be
ideals of A, then J ∝ E ⊆ I ∝ E are ideals of A ∝ E. Then there exists
(s, e) ∈ S ∝ E such that (s, e)J ∝ E ⊆ (J ∝ E : I ∝ E)I ∝ E. Or by
[1, Lemma 1], (J ∝ E : I ∝ E) = (J : I) ∝ E. Then sJ ⊆ (J : I)I. Thus I is
an S-multiplication ideal and hence A is an S-multiplication ring.

(B) (1) ⇒ (2) It follows from example 2.2.
(2) ⇒ (3) It follows from (A).
(3) ⇒ (4) It follows from Theorem 2.9 and [4, Theorem 1].
(4) ⇒ (1) It follows from [2, Theorem 11(1)]. □

The converse of Theorem 2.21(A) is not true in general as shown by the
following example.

Example 2.22. Let (A,P ) be a local multiplication ring (P proper) and
E = A/P be an A-module such that EP = 0. Then clearly A is a {1R}-
multiplication ring and by [8, Proposition 2.1], E is a {1A}-multiplication
module. Suppose that A ∝ E is a {1A} ∝ E-multiplication ring. Then by
Proposition 2.4(2), A ∝ E is a {1A} ∝ 0-multiplication ring. Therefore A ∝ E
is multiplication, a contradiction by [15, Example 2.6].

Let f : A → B be a ring homomorphism and let J be an ideal of B. The
amalgamated algebra of A with B along J with respect to f is the subring of
A×B given by: A ▷◁f J := {(a, f(a) + j) : a ∈ A, j ∈ J}. This construction is
introduced and studied by D’Anna, Finocchiaro and Fontana in [9,10]. Notice
that if B := A, f := idA and J := I an ideal of A, then A ▷◁f J = A ▷◁ I. It is
clear that if S is a multiplicatively closed subset of A, then S′ := {(s, f(s)) : s ∈
S} is a multiplicatively closed subset of A ▷◁f J and f(S) is a multiplicatively
closed subset of B. We examine conditions under which A ▷◁f J is an S′-
multiplication ring.

Theorem 2.23. Under the above notation. Assume that J is a nonzero proper
ideal of B. If A ▷◁f J is an S′-multiplication ring, then A is an S-multiplication
ring and f(A) + J is an f(S)-multiplication ring. The converse is true if J is
generated by an idempotent.
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Before proving Theorem 2.23, we establish the following lemma.

Lemma 2.24. Let f : A → B be a ring homomorphism and let J be a nonzero
proper ideal of B. Assume that J is finitely generated by an idempotent J = ⟨e⟩,
e2 = e). Then

α : A ▷◁f J → A× f(A)+J
ann(J)

(a, f(a) + j) 7→ (a, f(a) + j)

is a ring isomorphism.

Proof. It is easy to show that α is well defined and is a ring homomorphism.

Let (a, f(b) + k) ∈ A × f(A)+J
ann(J) , we have α(a, f(a) + e(f(b) + k − f(a))) =

(a, f(b) + k). Indeed, f(a) + e(f(b) + k − f(a)) = f(a) + e(f(b) + k) − ef(a).

Since, (e − 1)J = eBe − Be = 0, then e = 1. Therefore, f(a) + ef(b) + k −
ef(a) = f(b) + k, and hence α is surjective. Let (a, f(a) + j) ∈ Ker(α). Then

(a, f(a) + j) = 0 so a = 0 = f(a) + j, therefore j ∈ J ∩ ann(J) = (0) and
hence α is injective. Thus α is a ring isomorphism. □

Proof of Theorem 2.23. (1) Let PA : A ▷◁f J → A be the natural projection
of A ▷◁f J ⊆ A × B into A and p : A ▷◁f J → f(A) + J be the surjective
ring homomorphism defined by p((a, f(a) + j)) = f(a) + j for all a ∈ A and
j ∈ J . Assume that A ▷◁f J is an S′-multiplication ring. Then PA(A ▷◁f

J) = A is an S-multiplication ring and p(A ▷◁f J) = f(A) + J is an f(S)-
multiplication ring. Conversely, assume that J is generated by an idempotent.
By Proposition 2.7, (f(A) + J)/ann(J) is an f(S)-multiplication ring, where

f(S) := f(S) + ann(J). Therefore A × (f(A) + J)/ann(J) is an S × f(S)-
multiplication ring by Proposition 2.8 and hence A ▷◁f J is an S′-multiplication
ring by Proposition 2.4 and Lemma 2.24. □

For a commutative ring A and an ideal I of A, the amalgamated duplication
of A along I is the subring of A×A given by

A ▷◁ I := {(a, a+ i) : a ∈ A, i ∈ I}.
This ring was introduced and studied by D’Anna and Fontana in [11]. Notice
that if B := A, f := idA and J := I is an ideal of A, then A ▷◁f J = A ▷◁ I.
The following result is a direct consequence of Theorem 2.23. Notice that
S′ := {(s, s) : s ∈ S} is a multiplicatively closed subset of A ▷◁ I for each
multiplicatively closed subset S of A.

Corollary 2.25. Let A be a ring, I a nonzero proper ideal of A and S a
multiplicatively closed subset of A. If A ▷◁ I is an S′-multiplication ring, then
A is an S-multiplication ring. The converse is true if I is generated by an
idempotent.

Example 2.26. We keep the notation of Corollary 2.25. Let A := Z6, S :=
{1, 3} a multiplicatively closed subset of A. It is well known that if A is a
multiplication ring, then A is an S-multiplication ring by Example 2.2. Let
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I := (4) be a proper ideal of A generated by an idempotent of A. Then by
Corollary 2.25, A ▷◁ I is an S′-multiplication ring, where S′ := {(s, s) : s ∈ S}.
Proposition 2.27. We keep the notations of Theorem 2.23. Assume there
exists s ∈ S such that f(s)J = 0 for example S ∩Ker(f) ̸= ∅. Then A ▷◁f J
is an S′-multiplication ring if A is a multiplication ring.

Proof. Assume that A is a multiplication ring. Then by [9, Proposition 5.1(3)],
A ▷◁f J/0×J ∼= A is a multiplication ring. Then by Example 2.2, A ▷◁f J/0×J
is an (S′ + 0 × J)-multiplication ring. Let s ∈ S such that f(s)J = 0. Then
(s, f(s))0 × J = 0 and by Proposition 2.7, A ▷◁f J is an S′-multiplication
ring. □

3. More examples

In this section, the main objective is to provide some original examples to
illustrate some of the results previously stated. We begin by providing an
example of an S-multiplication ring that is not multiplication.

Example 3.1. Let (A,P ) be a local multiplication ring, E ̸= 0 be an A-module
such that EP = 0 (for instance E = A/P ) and S be a multiplicatively closed
subset of A such that S ∩ P ̸= ∅. Then:

(1) A ∝ E is an S ∝ E-multiplication ring.
(2) A ∝ E is not a multiplication ring.

Proof. (1) By [6, Theorem 3.1], we have (A ∝ E/0 ∝ E) ∼= A is a multiplication
ring and hence an (S ∝ E + 0 ∝ E)-multiplication ring. Let s ∈ S ∩ P .
Then (s, 0)0 ∝ E = 0. Therefore A ∝ E is an S ∝ E-multiplication ring by
Proposition 2.7.

(2) It follows from [15, Example 2.6]. □

Next, we give an example of an S-arithmetical ring that is not arithmetical.

Example 3.2. Let A be an arithmetical domain, let B be a domain, let J be a
nonzero proper ideal of B, let f : A → B be a non injective ring homomorphism,
let S be a multiplicatively closed subset of A such that ∅ ≠ S ∩Ker(f), and
let R := A ▷◁f J and S′ := {(s, f(s)) : s ∈ S}. Then:

(1) R is an S′-arithmetical ring.
(2) R is not an arithmetical ring.

Proof. (1) Notice that it is easy to show that Proposition 2.7 is true for the
S-arithmetical property. By [9, Proposition 5.1(3)], R/0 × J ∼= A is an arith-
metical ring. Then by Example 2.18, R/0 × J is an S′ + 0 × J-arithmetical
ring. Let s ∈ S ∩Ker(f). Then (s, f(s))0 × J = 0. So by Proposition 2.7 for
the S-arithmetical property, R is an S′-arithmetical ring.

(2) It follows from [14, Theorem 2.9]. □

Next, we give some examples of S-arithmetical rings that are not S-multi-
plication.
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Example 3.3. Let A0 be a non Noetherian von Neumann regular ring, let
A := A0[X], let S be a multiplicatively closed subset of A, let R := A×A and
let S′ := {1A} × S. Then:

(1) R is an S′-arithmetical ring.
(2) R is not an S′-multiplication ring.

Proof. (1) By [3, Theorem 6], A is arithmetical. Then by Example 2.18 and
Proposition 2.7 for the S-arithmetical property, R is an S′-arithmetical ring.

(2) Assume that R is an S′-multiplication ring. Then A is a multiplication
ring by Proposition 2.8, a contradiction by [3, p. 765]. □

Example 3.4. Let A := Z, the ring of integers, let E := Q the field of rational
numbers, let R := A ∝ E and S := {1A} ∝ E be a multiplicatively closed
subset of R. Then:

(1) R is an S-arithmetical ring.
(2) R is not an S-multiplication ring.

Proof. (1) By [16, Theorem 9], R is an arithmetical ring and hence an S-
arithmetical ring by Example 2.18.

(2) Assume that R is an S-multiplication ring. Then by Proposition 2.4(2),
R is a {1A} ∝ 0-multiplication ring. Then 0 ∝ Q is a {1A} ∝ 0-multiplication
ideal. Then Q is a multiplication Z-module by [4, Theorem 3], a contradiction.

□
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