• 제목/요약/키워드: trigonometric equation

검색결과 51건 처리시간 0.027초

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • 호남수학학술지
    • /
    • 제33권2호
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.

스타돔의 동적 불안정 현상에 관한 연구 (Study on the Dynamic Instability of Star-Dome Structures)

  • 한상을;후효무
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.72-77
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method, and study about parametrical instability of star-dome structures, which is subjected to harmonically pulsating load. When calculating stiffness matrix, we consider elastic stiffness and geometrical stiffness simultaneously. In equation of motion, we represent displacements and accelerations by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability region finally.

  • PDF

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

회전운동을 고려한 Cutout이 있는 복합재료 원통셸의 구조진동해석 및 최적설계 (Study on Structural Vibration Analysis and Design Optimization of Rotating Composite Cylindrical Shells with Cutout)

  • 이영신;김영완
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.467-476
    • /
    • 1998
  • The free vibration analysis and design optimization of the rotating composite cylindrical shells with a rectangular cutout are investigated by theoretical method. The Love's thin shell theory is used to derive the frequency equation. The theoretical results are obtained by application of the energy method employing the Rayleigh-Ritz procedure. The used circumferential vibration modes are trigonometric functions, the axial modes are the beam modal functions chosen to satisfy the prescribed boundary conditions. To check the validity, the theoretical results are compared with experimental, FEM and other theoretical results.

  • PDF

다양한 경계조건에서 부분 분포 하중을 받는 이방성 사각평판 해석 (Analysis for A Partial Distribution Loaded Orthotropic Rectangular Plate with Various Boundary Condition)

  • 시상광
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권5호
    • /
    • pp.13-22
    • /
    • 2018
  • 이 연구는 이방성 평판의 휨 해석을 위한 지배방정식을 유도하고 다양한 경계조건을 갖는 평판의 정확한 풀이과정을 제시하였다. 이 해법은 삼각급수를 이용하여 미분 방정식을 대수학적 방정식으로 변환시키는 전통적인 Navier와 Levy의 방법을 따랐다. Levy의 방법을 이용해 해를 구하려면 평판의 마주보는 두 끝단이 단순지지단인 경우에만 가능하다. Navier의 방법은 사각평판의 네 끝단이 모두 단순지지단 이어야 한다. 본 연구는 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였다. 이 해법은 평판 네 끝단의 경계조건이 단순지지단과 고정단의 어떤 조합이라도 적용될 수 있다. 하중조건도 분포하중, 부분하중 그리고 선하중에 대해 적용할 수 있다. 이 해법의 장점은 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였을 뿐만 아니라 정확한 해를 구할 수 있다. 비대칭 경계조건을 갖는 이방성평판에 대하여 이 해법을 이용한 계산결과를 나타냈다. 또한 Navier해법과 Levy해법 그리고 Szilard의 계산결과와 비교를 보여주었는데 계산된 처짐량이 잘 일치한다.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

Monitoring and control of multiple fraction laws with ring based composite structure

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.129-138
    • /
    • 2021
  • In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.