In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.
Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method, and study about parametrical instability of star-dome structures, which is subjected to harmonically pulsating load. When calculating stiffness matrix, we consider elastic stiffness and geometrical stiffness simultaneously. In equation of motion, we represent displacements and accelerations by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability region finally.
In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.
International Journal of Aerospace System Engineering
/
제3권1호
/
pp.10-16
/
2016
A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.
The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.
In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.
The free vibration analysis and design optimization of the rotating composite cylindrical shells with a rectangular cutout are investigated by theoretical method. The Love's thin shell theory is used to derive the frequency equation. The theoretical results are obtained by application of the energy method employing the Rayleigh-Ritz procedure. The used circumferential vibration modes are trigonometric functions, the axial modes are the beam modal functions chosen to satisfy the prescribed boundary conditions. To check the validity, the theoretical results are compared with experimental, FEM and other theoretical results.
이 연구는 이방성 평판의 휨 해석을 위한 지배방정식을 유도하고 다양한 경계조건을 갖는 평판의 정확한 풀이과정을 제시하였다. 이 해법은 삼각급수를 이용하여 미분 방정식을 대수학적 방정식으로 변환시키는 전통적인 Navier와 Levy의 방법을 따랐다. Levy의 방법을 이용해 해를 구하려면 평판의 마주보는 두 끝단이 단순지지단인 경우에만 가능하다. Navier의 방법은 사각평판의 네 끝단이 모두 단순지지단 이어야 한다. 본 연구는 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였다. 이 해법은 평판 네 끝단의 경계조건이 단순지지단과 고정단의 어떤 조합이라도 적용될 수 있다. 하중조건도 분포하중, 부분하중 그리고 선하중에 대해 적용할 수 있다. 이 해법의 장점은 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였을 뿐만 아니라 정확한 해를 구할 수 있다. 비대칭 경계조건을 갖는 이방성평판에 대하여 이 해법을 이용한 계산결과를 나타냈다. 또한 Navier해법과 Levy해법 그리고 Szilard의 계산결과와 비교를 보여주었는데 계산된 처짐량이 잘 일치한다.
This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.
Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
Advances in nano research
/
제10권2호
/
pp.129-138
/
2021
In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.