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NEW EXACT TRAVELLING WAVE SOLUTIONS OF

SOME NONLINEAR EVOLUTION EQUATIONS BY THE(
G′

G

)
-EXPANSION METHOD

Youho Lee∗, Mihye Lee and Jaeyoung An

Abstract. In this paper, the
(

G′

G

)
-expansion method is used to

construct new exact travelling wave solutions of some nonlinear
evolution equations. The travelling wave solutions in general form
are expressed by the hyperbolic functions, the trigonometric func-
tions and the rational functions, as a result many previously known

solitary waves are recovered as special cases. The
(

G′

G

)
-expansion

method is direct, concise, and effective, and can be applied to many
other nonlinear evolution equations arising in mathematical physics.

1. Introduction

Nonlinear evolution equations are widely used as models to describe
complex physical phenomena in various fields of sciences, especially in
fluid mechanics, solid state physics, plasma wave and chemical physics.
One of the basic physical problems for nonlinear PDEs is to obtain
their travelling wave solutions. During the past decades, searching for
explicit solutions of nonlinear evolution equations by using various dif-
ferent methods has been the main goal for many researchers, and many
powerful methods to construct exact solutions of those nonlinear equa-
tions have been developed such as the inverse scattering transform [1],
the Backlund/Darboux transform [2, 3], Hirota’s bilinear method [4],
the truncated Painleve expansion [5], the tanh-sech method [6], the ex-
tended tanh method [7, 8], the Jacobi elliptic function expansion [9],
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the F-expansion [11], the sub-ODE method [12, 13], the homogeneous
balance method [14], the sine-cosine method [15, 16], the rank analysis
method [17], the ansatz method [18, 19], the Exp-function expansion
method [20], and so on.

In this paper, the
(
G′

G

)
-expansion method, which is recently devel-

oped by Wang et al [21], is used to search for new travelling wave solu-
tions of some nonlinear evolution equations such as the Benjamin, Bona
and Mahony equation (BBM equation) [22], a nonlinear model intro-
duced in [23] and a coupled Higgs equation [24]. These equations play
an important role in applied scientific fields such as plasma, nonlinear

optical fiber and statistical physics. In the following section, the
(
G′

G

)
-

expansion method is described in great detail.

2. Description of the
(
G′

G

)
-expansion method

Suppose that a nonlinear equation, say in two independent variables
x and t, is given by

P (u, ut, ux, uxx, utt, ...) = 0,(1)

where u = u(x, t) is an unknown function, P is a polynomial in u =
u(x, t) and its various partial derivatives, in which the highest order
derivatives and nonlinear terms are involved. To find solution u explic-
itly, we take the following steps:

Step 1. Combining the independent variables x and t into one variable
ξ = x− ωt, we suppose that

u(x, t) = u(ξ), ξ = x− ωt,(2)

the travelling wave variable (2) permits us reducing (1) to an ODE for
u = u(ξ)

Q(u, u′, u′′, u′′′, ...) = 0.(3)

Step 2. Suppose that the solution of ODE (3) can be expressed by a

polynomial in
(
G′

G

)
ad follows:

u(ξ) = am

(
G′

G

)m
+ am−1

(
G′

G

)m−1
+ · · · ,(4)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0,(5)
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am, am−1, · · · , λ and µ are constants to be determined later, am 6= 0,

the unwritten part in (4) is also a polynomial in
(
G′

G

)
, but the degree

of which is generally equal to or less than m − 1, the positive integer
m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).

Step 3. By substituting (4) into (3) and using second order LODE (5),

collecting all terms with the same order of
(
G′

G

)
together, the left-hand

side of (3) is converted into another polynomial in
(
G′

G

)
. Equating each

coefficient of this polynomial to zero, yields a set of algebraic equations
for am, am−1, · · · , λ and µ.

Step 4. Assuming that the constants am, · · · , ω, λ and µ can be obtained
by solving the algebraic equations in Step 3, since the general solutions
of the second order LODE (5) have been well known for us, then substi-
tuting am, · · · , ω and the general solutions of (5) into (4) we have more
travelling wave solutions of the nonlinear evolution equation (1).

3. Application to the BBM equation

Benjamin, Bona and Mahony [22] established the model

ut + αux − βuxxt + κ(u2)x = 0,(6)

which is called BBM equation.
Using the travelling wave u(x, t) = u(ξ), ξ = x−ωt we have from (6)

the nonlinear ordinary differential equation

−ωu′ + αu′ + βωu′′′ + 2κuu′ = 0.(7)

Integrating (7) with respect to ξ we obtain the second-order equation:

C + (−ω + α)u+ βωu′′ + κu2 = 0,(8)

where C is a constant of integration that is to be determined later.

Suppose that the solution of ODE (8) can be expressed by a polyno-

mial in
(
G′

G

)
as follows:

u(ξ) = am

(
G′

G

)m
+ · · · ,(9)
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where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0.(10)

By using (9) and (10) it is easily derived that

u2 = a2m

(
G′

G

)2m

+ · · · ,(11)

u′ = −mam
(
G′

G

)m+1

+ · · · ,(12)

u′′ = m(m+ 1)am

(
G′

G

)m+2

+ · · · .(13)

Considering the homogeneous balance between u′′ and u2 in (8), based
on (11) and (13) we require that 2m = m+ 2⇒ m = 2, so we can write
(9) as

u(ξ) = a2

(
G′

G

)2

+ a1

(
G′

G

)
+ a0, a2 6= 0,(14)

and therefore

u2(ξ) = a22

(
G′

G

)4

+ 2a2a1

(
G′

G

)3

+ (a21 + 2a2a0)

(
G′

G

)2

+

2a1a0

(
G′

G

)
+ a20.(15)

By using (10) and (14) it is derived that

u′′ = 6a2

(
G′

G

)4

+ (2a1 + 10a2λ)

(
G′

G

)3

+ (8a2µ+ 3a1λ+ 4a2λ
2)

(
G′

G

)2

+(6a2λb+ 2a1µ+ a1λ
2)

(
G′

G

)
+ 2a2µ

2 + a1λµ.(16)

By substituting (14), (15) and (16) into (8) and collecting all terms

with the same power of
(
G′

G

)
together, the left-hand side of (8) is con-

verted into another polynomial in
(
G′

G

)
. Equating each coefficient of

this polynomial to zero yields a set of simultaneous algebraic equations
for a2, a1, a0, ω, a, b and C. Solving the resulting algebraic equations,
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yields

a2 =
6β(α+ 2κa0)

(βλ2 + 8βµ− 1)κ
, a1 =

6β(α+ 2κa0)λ

(βλ2 + 8βµ− 1)κ
, ω = − α+ 2κa0

βλ2 + 8βµ− 1
,

C =
K1

(βλ2 + 8βµ− 1)2κ
,(17)

where λ, µ, α, β, κ and a0 are arbitrary constants and K1 = κa0αβλ
2 +

8κa0αβµ+κ2a20−κa0αβ2λ4 +8κa0αβ
2λ2µ−16κa0αβ

2µ2 +6β2λ2µα2 +
8β2λ2µκ2a20 + 12β2µ2α2 − 16β2µ2κ2a20 − κ2a20β2λ4.

By using (17), expression (14) can be written as

u(ξ) =
6β(α+ 2κa0)

(βλ2 + 8βµ− 1)κ

(
G′

G

)2

+
6β(α+ 2κa0)λ

(βλ2 + 8βµ− 1)κ

(
G′

G

)
+ a0,(18)

where ξ = x + α+2κa0
βλ2+8βµ−1 t. (18) is the formula of a solution of (8),

provided that the integration constant C in (8) is taken as that in (17).
Substituting the general solutions of (10) into (18) we have three

types of travelling wave solutions of the bbm equation (6) as follows:

When λ2 − 4µ > 0,

u1(ξ) =
3β(α+ 2κa0)(λ2 − 4µ)

2(βλ2 + 8βµ− 1)κ

C1sinh

√
λ2−4µ
2 ξ + C2cosh

√
λ2−4µ
2 ξ

C1cosh

√
λ2−4µ
2 ξ + C2sinh

√
λ2−4µ
2 ξ

2

− 3β(α+ 2κa0)λ2

2(βλ2 + 8βµ− 1)κ
+ a0,(19)

where ξ = x+ α+2κa0
βλ2+8βµ−1 t, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,

then u1 = u1(ξ) can be written as

u1(ξ) = −3β(α+ 2κa0)(λ
2 − 4µ)

2(βλ2 + 8βµ− 1)κ
sech2

(√
λ2 − 4µ

2
ξ + ξ0

)

− 6β(α+ 2κa0)µ

(βλ2 + 8βµ− 1)κ
+ a0,(20)

which is the known solitary wave solution of the BBM equation (6) (see

[22]), where ξ0 = tanh−1C2
C1
, ξ = x+ α+2κa0

βλ2+8βµ−1 t.
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When λ2 − 4µ < 0,

u2(ξ) =
3β(α+ 2κa0)(4µ− λ2)

2(βλ2 + 8βµ− 1)κ

−C1sin

√
4µ−λ2

2 ξ + C2cos

√
4µ−λ2

2 ξ

C1cos

√
4µ−λ2

2 ξ + C2sin

√
4µ−λ2

2 ξ

2

− 3β(α+ 2κa0)λ2

2(βλ2 + 8βµ− 1)κ
+ a0,(21)

where ξ = x+ α+2κa0
βλ2+8βµ−1 t, C1 and C2 are arbitrary constants.

When λ2 − 4µ = 0,

u3(ξ) =
6β(α+ 2κa0)

(βλ2 + 8βµ− 1)κ

(
C2

C1 + C2ξ

)2

− 3β(α+ 2κa0)λ
2

2(βλ2 + 8βµ− 1)κ
+ a0,(22)

where ξ = x+ α+2κa0
12βµ−1 t, C1 and C2 are arbitrary constants.

Remark 1. It is used as an alternative the KdV equation which de-
scribes unidirectional propagation of weakly long dispersive waves [8].
As a model that characterizes long waves in nonlinear dispersive media,
the BBM equation, like KdV equation, was formally derived to describe
an approximation for surface water waves in a uniform channel. the
equation covers not only the surface waves of long wavelength in liquids,
but also hydromagnetic waves clod plasma, acoustic waves in anhar-
monic crystals, and acoustic gravity waves in compressible fluids. Many
researchers are attracted by the wide applicability of the BBM equation
[8].

4. Application to a nonlinear model equation for weak sym-
metries

Consider the model equation introduced in [23]

uxxx + u(ut + δux) = 0,(23)

where δ is a constant and the subscripts denote differentiation with
respect to the variable indicated.

Using the travelling wave u(x, t) = u(ξ), ξ = x−ωt we have from (23)
the nonlinear ordinary differential equation

u′′′ + u(−ωu′ + δu′) = 0.(24)
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Integrating (24) with respect to ξ we obtain the second-order equation:

C + u′′ +
1

2
(−ω + δ)u2 = 0,(25)

where C is a constant of integration that is to be determined later.
Considering the homogeneous balance between u′′ and u2 in (25), we

require that 2m = m+ 2⇒ m = 2, so (4) can be written as

u(ξ) = a2

(
G′

G

)2

+ a1

(
G′

G

)
+ a0, a2 6= 0,(26)

and therefore

u2(ξ) = a22

(
G′

G

)4

+ 2a2a1

(
G′

G

)3

+ (a21 + 2a2a0)

(
G′

G

)2

+

2a1a0

(
G′

G

)
+ a20.(27)

By using (5) and (26) it is derived that

u′′ = 6a2

(
G′

G

)4

+ (2a1 + 10a2λ)

(
G′

G

)3

+ (8a2µ+ 3a1λ+ 4a2λ
2)

(
G′

G

)2

+(6a2λb+ 2a1µ+ a1λ
2)

(
G′

G

)
+ 2a2µ

2 + a1λµ.(28)

By substituting (26), (27) and (28) into (25) and collecting all terms

with the same power of
(
G′

G

)
together, the left-hand side of (25) is

converted into another polynomial in
(
G′

G

)
. Equating each coefficient of

this polynomial to zero yields a set of simultaneous algebraic equations
for a2, a1, a0, ω, a, b and C. Solving the resulting algebraic equations,
yields

a2 =
12a0

λ2 + 8µ
, a1 =

12a0λ

λ2 + 8µ
, ω =

λ2 + 8µ+ δa0
a0

,

C =
a0(−8λ2µ+ 16µ2 + λ2)

2(λ2 + 8µ)
,(29)

where λ, µ, δ and a0 are arbitrary constants.
By using (29), expression (26) can be written as

u(ξ) =
12a0

λ2 + 8µ

(
G′

G

)2

+
12a0λ

λ2 + 8µ

(
G′

G

)
+ a0,(30)

where ξ = x − λ2+8µ+δa0
a0

t. (30) is the formula of a solution of (25),

provided that the integration constant C in (25) is taken as that in (29).
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Substituting the general solutions of (5) into (30) we have three types
of travelling wave solutions of the weak equation (23) as follows:

When λ2 − 4µ > 0,

u1(ξ) =
12a0(λ

2 − 4µ)

λ2 + 8µ

C1sinh

√
λ2−4µ
2 ξ + C2cosh

√
λ2−4µ
2 ξ

C1cosh

√
λ2−4µ
2 ξ + C2sinh

√
λ2−4µ
2 ξ

2

− 3a0λ
2

λ2 + 8µ
+ a0,(31)

where ξ = x− λ2+8µ+δa0
a0

t, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,

then u1 = u1(ξ) can be written as

u1(ξ) = −12a0(λ
2 − 4µ)

λ2 + 8µ
sech2

(√
λ2 − 4µ

2
ξ + ξ0

)

+
10(λ2 − 4µ)a0

λ2 + 8µ
.(32)

where ξ0 = tanh−1C2
C1
, ξ = x− λ2+8µ+δa0

a0
t.

When λ2 − 4µ < 0,

u2(ξ) =
3a0(4µ− λ2)
λ2 + 8µ

−C1sin

√
4µ−λ2
2 ξ + C2cos

√
4µ−λ2
2 ξ

C1cos

√
4µ−λ2
2 ξ + C2sin

√
4µ−λ2
2 ξ

2

− 3a0λ
2

λ2 + 8µ
+ a0,(33)

where ξ = x− λ2+8µ+δa0
a0

t, C1 and C2 are arbitrary constants.

When λ2 − 4µ = 0,

u3(ξ) =
12a0

λ2 + 8µ

(
C2

C1 + C2ξ

)2

− 3a0λ
2

λ2 + 8µ
+ a0,(34)

where ξ = x− λ2+8µ+δa0
a0

t, C1 and C2 are arbitrary constants.
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5. Application to a coupled Higgs equation

Let us consider the Coupled Higgs equation [24]

utt − uxx + |u|2u− 2uv = 0,(35)

vtt + vxx − (|u|2)xx = 0.(36)

Using the wave variables

u(x, t) = eiθu(ξ), v(x, t) = v(ξ), θ = px− rt, ξ = x− ωt,(37)

(35) and (36) are carried to the nonlinear ordinary differential equation,
respectively:

(ω2 − 1)u′′ + (p2 − r2)u− 2uv + u3 = 0,(38)

(ω2 + 1)v′′ − 2(u′)2 − 2uu′′ = 0.(39)

Considering the homogeneous balance between u3 and u′′ in (38) and
that between (u′)2 and v′′ in (39) (3m = n+ 2, 2m+ 2 = n+ 2⇒ m =
1, n = 2), so we can write the solutions by (4)

u(ξ) = a1

(
G′

G

)
+ a0, a1 6= 0,(40)

v(ξ) = b2

(
G′

G

)2

+ b1

(
G′

G

)
+ b0, b2 6= 0,(41)

where G = G(ξ) satisfies the second order LODE:

G′′ + λG′ + µG = 0,(42)

and a1, a0, b2, b1, b0, λ and µ are constants to be determined later.
By using (40), (41) and (42) it is derived that

uv = a1b2

(
G′

G

)3

+ (a1b1 + a0b2)

(
G′

G

)2

+ (a0b1 + a1b0)

(
G′

G

)
+

a0b0,(43)

u3(ξ) = a31

(
G′

G

)3

+ 3a21a0

(
G′

G

)2

+ 3a1a0

(
G′

G

)
+ a30.(44)

u′ = −a1
(
G′

G

)2

− a1λ
(
G′

G

)
− a1µ.(45)
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u′′ = 2a1

(
G′

G

)3

+ 3a1λ

(
G′

G

)2

+ (2a1µ+ a1λ
2)

(
G′

G

)
+

a1λµ.(46)

By substituting (43)-(46) into (38) and (39) and collecting all terms

with the same power of
(
G′

G

)
together, the left-hand side of (38) and

(39) is converted into another polynomial in
(
G′

G

)
. Equating each co-

efficient of (38) and (39) to zero yields a set of simultaneous algebraic
equations for a1, a0, b2, b1, b0, ω, λ and µ. Solving the resulting algebraic
equations, yields the sets of coefficients the followings:

a1 =
2a0
λ
, b2 = −2, b1 = −2λ, b0 = −4µλ2 − λ2p2 + λ2r2 − a20λ2 + 4a20µ

2λ2
,

ω = ±
√
−2a20 − λ2

λ
,(47)

where λ, µ and a0 are arbitrary constants.

By using (47), expression (40) and (41) can be written as

u(ξ) =
2a0
λ

(
G′

G

)
+ a0,(48)

v(ξ) = −2
(
G′

G

)2

− 2λ

(
G′

G

)
−

4µλ2 − λ2p2 + λ2r2 − a20λ
2 + 4a20µ

2λ2
,(49)

where ξ = x±
√
−2a20−λ2
λ t.

Substituting the general solutions of (42) into (48) and (49) we have
three types of travelling wave solutions of the coupled Higgs equation
(38) and (39) as follows:

When λ2 − 4µ > 0,

u1(ξ) =
a0
√
λ2 − 4µ

λ

C1sinh

√
λ2−4µ
2 ξ + C2cosh

√
λ2−4µ
2 ξ

C1cosh

√
λ2−4µ
2 ξ + C2sinh

√
λ2−4µ
2 ξ


×exp[i(px− rt)],(50)
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v1(ξ) = −2(λ2 − 4µ)

C1sinh

√
λ2−4µ
2 ξ + C2cosh

√
λ2−4µ
2 ξ

C1cosh

√
λ2−4µ
2 ξ + C2sinh

√
λ2−4µ
2 ξ

2

−−λ
4 + 4µλ2 − λ2p2 + λ2r2 − a20λ2 + 4a20µ

2λ2
,(51)

where ξ = x±
√
−2a20−λ2
λ t, a0, C1 and C2 are arbitrary constants.

In particular, if C1 6= 0, C2 = 0,, then u1 = u1(ξ) can be written as

u1(ξ) = a0λtanh
λ

2
exp[i(px− rt)],(52)

v1(ξ) = 2λsech2λ

2
+ 2 + λ2 + p2 − r2 − a20,(53)

which is the known solitary wave solution of the coupled Higgs equation
(35) and (36) (see [24]).

When λ2 − 4µ < 0,

u2(ξ) =
a0
√

4µ− λ2
λ

−C1sin

√
4µ−λ2

2 ξ + C2cos

√
4µ−λ2

2 ξ

C1cos

√
4µ−λ2

2 ξ + C2sin

√
4µ−λ2

2 ξ

 ,(54)

v2(ξ) = −2(4µ− λ2)

−C1sin

√
4µ−λ2
2 ξ − C2cos

√
4µ−λ2
2 ξ

C1cos

√
4µ−λ2
2 ξ + C2sin

√
4µ−λ2
2 ξ

2

−−λ
4 + 4µλ2 − λ2p2 + λ2r2 − a20λ2 + 4a20µ

2λ2
,(55)

where ξ = x±
√
−2a20−λ2
λ t, a0, C1 and C2 are arbitrary constants.

When λ2 − 4µ = 0,

u3(ξ) = 0,(56)

v3(ξ) = −−λ
4 + 4µλ2 − λ2p2 + λ2r2 − a20λ2 + 4a20µ

2λ2
,(57)

where ξ = x±
√
−2a20−λ2
λ t, a0, C1 and C2 are arbitrary constants.
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6. Conclusion

In this paper, we obtained three types of new travelling wave solu-
tions in general form for some nonlinear evolution equations, the Ben-
jamin, Bona and Mahony equation, the weak symmetric equation, the

Mindlin equation and the Higgs equations based on the
(
G′

G

)
-expansion

method, and as a result some of the previously known traveling wave
solutions were recovered as special cases. Our results reveal that the(
G′

G

)
-expansion method is concise, direct, easy to apply, yet powerful

tool for solving various kinds of nonlinear problems arising in mathe-
matical physics.
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