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1. Introduction 

 

 In the past few decades several shear deformation 

theories have developed and established by various 

authors. Pagano [1] presented given an exact three 

dimensional (3D) elasticity solution for laminated 

plates.  Herein, each lamina considered as 3D solid 

and hence the computational effort becomes more. 

To bypass the above confines of computational cost, 

several single layer theories have been developed. 

Generally single layer theories can be grouped as 

classical laminated plate theory, first order shear 

deformation theory and higher order shear 

deformation theory (HSDT). The classical laminated 

theory completely neglects the shear effects. The 

first order theory interprets the shear effects. 

However, it fails to fulfill the traction free boundary 

condition at the plate surfaces. In order to satisfy the 

traction free boundary condition, an artificial shear 

correction factor must be considered. The above 

discussed limitations can be overcome by HSDTs.  

Based on the expressions of mathematical filed, the 

HSDT classified as polynomial and non-polynomial 

higher order theory.  The polynomial higher order 

theories represent Taylor series expansion of 

thickness coordinates. It varies approximately 

parabolic variations of transverse shear stress 

across plate thickness and also satisfies the traction 
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free boundary condition over the plate surfaces. 

Henceforth, the shear correction factor is evaded.  

Levinson [2] proposed a plate theory in terms of 

cubic order of thickness coordinates. Kant and 

Pandya  [3] presented a higher order theory with 7 

unknown field variables for ant symmetric laminated 

composite plates. Talha and Singh [4] developed a 

plate theory with transverse normal strain effect 

using 13 unknowns for functionally graded plate. 

However, developing the displacement field in terms 

of Taylor's series expansions will introduces 

additional unknown variables and also these unknown 

variables are physically hard to interpret.  

The non-polynomial shear deformation 

theory leads to more accuracy and easy formulation. 

Touratier [5] proposed HSDT in terms of sinusoidal 

shear strain shape function. Karama et al. [6], 

Soldataos [7], Aydogdu [8], Mantari et al. [9], 

Neves et al. [10] and Suganyadevi and Singh [11] 

have paid much attention for developing the 

displacement field in terms of shear strain function. 

Though, the above discussed theories give non-

linear variations of displacement across the plate 

thickness, they fails to meet the interlaminar shear 

stress continuity across the plate thickness.  

Toledano and Murakami [12] used a mixed 

variational principal to account the zigzag 

requirement and transverse shear stress continuity 

at each layer interfaces. Cho et al. [13] studied 

dynamic response of laminated plates using a 

Layerwise theory. Carrera developed [14] a mixed 

Layerwise theory by interpolating legendre 

polynomials. Ferreira [15] given a Layerwise theory 

in which the equilibrium equations and boundary 

conditions are achieved through mesh free 

methodology. Though above discussed theories, 

evaluate the structural responses of laminated plates 

with sufficient precision. However, these models 

required high computational efforts. Because the 

unknowns are strongly depends on each layer. Hence 

forth, several authors focused towards zigzag theory 

in which the unknowns are taken at each layer 

interfaces in terms of those at the reference plane.  

Cho and Parmeter [16] presented model where the 

zigzag requirement and transverse shear stress 

continuity are obtained by implementing Heaviside 

step functions.  Icardi [17] used a zigzag model for 

quadratic plate element using 8 noded element with 

56 field variables per element. Carrera et al. [18] 

employed a zigzag model and they obtained cubic 

variation of in-plane displacement through the plate 

thickness. Though, the above noted polynomial 

zigzag theories are layer independent, interpreting 

the higher order terms in the formulation is quite 

difficult. 

In order to avoid the above shortcomings, non-

polynomial zigzag theories have been developed. It 

represents non-linear variation of in-plane 

displacement, parabolic variation of transverse share 

stress continuity, zigzag requirement, adequate 

accuracy and the traction free boundary condition is 

guaranteed. Shimpi and Ghugal [19] have introduced 

a Layerwise shear deformation theory with involving 

trigonometric shear strain function for laminated 

beams.  Mantari et al. [9] studied a zigzag theory 

using a trigonometric shear strain function for 

laminated composite plates. Notable works based on 

various shear deformation theories can be seen in 

[20][21].  

 To the best of authors knowledge, the present 

work presents buckling and vibration analysis of 

laminated composite and sandwich plates using 

trigonometric shear deformation theory. To handle 

the dynamic analysis analytical and finite element 

formulation is implemented.  The current theory 

estimates the zigzag requirement and interlaminar 

shear stress continuity with easy formulation and 

augmented results. Moreover, the non-polynomial 

shear strain function makes the shear stress free 

conditions at the top and bottom surfaces of the plate 

a priori. In the case of analytical approach, the 

governing differential equations and boundary 

conditions are obtained from principle of virtual work. 

For the finite element formulation, the governing 

equations are obtained minimizing the total potential 

energies. By employing eight noded 𝐶0  continuous 

isoparametric serendipity element the dynamic 

analysis are carried out. Various numerical examples 

are carried out and they are validated with the 

available results.  

 

2. Theoretical formulation 
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A rectangular laminated composite plate is taken as 

shown in Fig [1]. The plate is composed of equally 

thickened four layer with theta angle orientation. It 

has plate thickness h, length a and width b. The 

present work is the redefined work of Arya et al. [5] 

to the multilayered laminated composites and 

sandwich plates.  

 
Fig. 1 Schematic diagram of a rectangular laminated plate. 

Further, it is the combination of Layerwise 

parameters and a trigonometric shear strain function 

[22] which can be represented as follows  
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Throughout this work superscript k 

represents the layer number. Here  kU and 
kV  are 

the in-plane displacement at ( , , )k k kx y z  
whereas   

0u  and   are 0v  the in-plane displacement at 

 , , 0x y . The transverse displacement  0w
 
 is 

the function of x and y. Midplane rotations  
x   and  

y  with respect to y and x axis.  Here   

, , ,k k k kA B C D  
are the Layerwise parameters 

which dependent on each layer geometry and 

material property and consequently, they varies in 

each layer. The generalized expressions of 

, , ,k k k kA B C D  are given in Appendix. 

 

 2.2. Formulation for analytical methodology 

 The governing differential equation is obtained 

from the dynamic version of principal of virtual work 

as follows:  
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Employing the above equations [4] in equation [3] 

the governing differential equation is obtained as 

represented in Equation [5].  

 

 

 

.. ..

0 , , 0 0 1 0, 3

.. ..

0 , , 0 0 1 0, 5

0 , , , 1 0, 0,

..

2 0, 0, 4 , 6 , 0 0

, ,

: ;

: ;

: 2

;

:

k k k k k

xx x xy x x

k k k k k

xy yy y y y

k k k k k

xx xx xy xy yy yy x y

k k k k

xx yy x x y y

k k k

x xx x xy y

u N N I u I w I

v N N I v I w I

w M M M N q I u v

I w w I I I w

A N N

 

 



 



   

   

     

    

   

   

, , 1

.. ..

, , 1 3 0 4 0, 7

, , , , 2

.. ..

, , 2 5 0 6 0, 8

( )

;

: ( )

; (5)

k k k k

xx x xy y

k k k k k k

xx x xy y x x

k k k k k k k

y yy y xy x yy y xy x

k k k k k k

yy y xy x y y

B M M Q

P P L I u I w I

C N N D M M Q

P P L I v I w I







  

     

    

     

 

The following Navier solution equation [7] is 

considered for the five unknowns which satisfy the 

simply supported boundary conditions given in 

equation [6] and differential equation [5].  
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 2.2. Formulation for finite element method 
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The total potential energy of the system can be 

written as  

(8)e s in ac extT U U U W       

Here 

T -represents the kinetic energy of the system 

Us - represents the strain energy due to      

deformation 

Uin - represents the potential energy due to in-

plane loads  

Uac - represents the strain energy due to artificial 

constraints 

Wext - represents the work done due to external 

loading  

The elemental potential energy can be represented 

as: 
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where  ,e peK K  
 are elemental stiffness matrix 

and penalty matrix whereas  GeK  are the elemental 

geometric matrix. 

The following eigen value equations are obtained 

[9,10] for the buckling and free vibration analysis 

respectively.  
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Here, [G] denotes the geometric matrix due to the 

uniaxial load and [M] denotes mass matrix, λ 

denotes the buckling parameter and ω denotes the 

frequency parameter. 

The following [11,12] non-dimensionalised 

equations and material models (MM) are used for the 

buckling and free vibration analysis. 
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3. Numerical results and discussion 

 

3.1. Free vibration Analysis for a four layered 

composite plate 

A four layered laminated [0/90/90/0] square plate 

is considered. The plate is simply supported at its 

four edges. The fundamental frequencies equation 

[12] are evaluated by varying the modular ratio from 

3 to 40 (MP2). The span to thickness ratio of the 

plate is assumed as a/h=5. From the Figure [1.a] it 

can be seen that, the present analytical and finite 

element formulation are in good agreement, also 

better than the available higher order theory [23]. It 

is also noticed that the higher order theory 

overestimate the vibration especially for thick plate. 

Further, it is also noticed from the Figure [2] that 

the fundamental frequencies increases when the 

modular ratio increase.  

 
Fig. 2 Non dimensionless Fundamental frequency 

3.1. Buckling Analysis of laminated composite 

plate 

A simply supported three layered symmetric cross 

ply [0/90/0] laminated plate subjected to uniaxial 

load. The non-dimensional buckling load parameter 

is obtained using MP2 model with modular ratio 40. 

By varying the side to thickness ratio from thick to 
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thin plate (a/h=2-100) the buckling load parameters 

are calculated and are compared with higher order 

theory [24]. From the Figure [3] it is clearly 

confirms that the compared higher order theory [24] 

overestimates the buckling loads as compared to the 

present zigzag model. It is also observed that the 

buckling load parameter increases with the side to 

thickness ratio (a/h) increment. 

 

Table 1: Influence of BCs & a/h on buckling load 

 

Further, Figure [4] shows the first six buckling 

mode shapes for the same four layered cross-ply 

plate under uniaxial load along with respective eigen 

values given.  

Besides, a four layered anti symmetric [ 45/-

45/45/-45] angle ply laminated plate under uniaxially 

loaded is taken for this example.  The material 

properties specified in MP2 is considered. By 

varying the boundary condition from SSS to CCCC 

the buckling analysis is carried out and tabulated in 

Table [1]. 

 

 
Fig. 3  Non dimensionless buckling load parameter 

 

 
Fig. 4  Six buckling mode shapes of four layered plate  

 

4. Conclusions 

 

This paper presented an effective model with the 

combination of Layerwise parameters and 

trigonometric shear strain function using Navier 

closed type solution technique and finite element 

formulation for the buckling and free vibration 

analysis of laminated composite and sandwich plates. 

Like FSDT the present model utilizes same 

unknowns, which reduce the complexity of 

computational efforts and formulation. This theory 

represents a non-linear representation of transverse 

shear stress and satisfies the axial displacement and 

transverse shear stress continuity at the layer 

interfaces. Through constitutive relation the 

interlaminar shear stress continuity effect is 

achieved. The requirement of shear correction 

coefficient is evaded. Because, it vanishes the 

transverse shear stresses at the upper and lower 

surfaces of the plate. Several numerical predictions 

are carried out independently for the laminated 

plates under considerations of number of layers, 

layer orientation, side to thickness ratio and different 

loading conditions. In all the cases, the present 

results are well matching with the 3D elasticity 

solutions and provide adequate accuracy than the 

existing shear deformation theories. The present 

analytical approach doesn’t carry numerical and 

computational error, however concern to classical 

boundary condition. Henceforth, various boundary 

conditions and loading conditions are 

comprehensively analyzed using finite element 

formulation. Hence, from the above results and 

discussions it can be concluded that the present 

model have the capability to analyze the static 
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behavior of any multilayered cross-ply plate with 

adequate accuracy. Also, it can be suggested as the 

most favorable and simplest one to examine the 

laminated plates. 
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