• 제목/요약/키워드: transcription activator

검색결과 292건 처리시간 0.026초

Quantitative Assay for the Binding of Jun-Fos Dimer and Activator Protein-1 Site

  • Lee, Sang-Kyou;Park, Se-Yeon;Jun, Gyo;Hahm, Eun-Ryeong;Lee, Dug-Keun;Yang, Chul-Hak
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.594-598
    • /
    • 1999
  • The Jun and Fos families of eukaryotic transcription factors form heterodimers capable of binding to their cognate DNA enhancer elements. We are interested in searching for inhibitors or antagonists of the binding of the Jun-Fos heterodimer to the activator protein-1 (AP-1) site. The basic-region leucine zipper (bZIP) domain of c-Fos was expressed as a fusion protein with glutathione S-transferase, and allowed to form a heterodimer with the bZIP domain of c-Jun. The heterodimer was bound to glutathione-agarose, to which were added radiolabeled AP-1 nucleotides. After thorough washing, the gel-bound radioactivity was counted. The assay is faster than the coventional electrophoretic mobility shift assay because the gel electrophoresis step and the autoradiography step are eliminated. Moreover, the assay is very sensitive, allowing the detection of picomolar quantities of nucleotides, and is not affected by up to 50% dimethylsulfoxide, a solvent for hydrophobic inhibitors. Curcumin and dihydroguaiaretic acid, recently known inhibitors of Jun-Fos-DNA complex formation, were applied to this Jun-GST-fused Fos system and revealed to decrease the dimer-DNA binding.

  • PDF

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa;Ju, Uk-Il;Song, Jung-Yup;Chun, Yang-Sook
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.734-741
    • /
    • 2014
  • Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.

Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α

  • Kim, Jin-Ik;Kaufman, Randal J.;Back, Sung Hoon;Moon, Ja-Young
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.783-793
    • /
    • 2019
  • When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of $ATF6{\alpha}$ by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human $ATF6{\alpha}$ N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-$hATF6{\alpha}$ deletion variant was cleaved to liberate active transcription activator encompassing GV-$hATF6{\alpha}$ fragment which could translocate into the nucleus. The translocated GV-$hATF6{\alpha}$ fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-$hATF6{\alpha}$(333) represents an innovative tool to investigate regulated intramembrane proteolysis of $ATF6{\alpha}$. It can substitute active pATF6(N) binding motif-based reporter cell lines.

Aspergillus nidulans에서 GAL4 유사 전사인자를 암호화하는 gtfA 유전자의 분리 및 분석 (Isolation and Characterization of the gtfA Gene Encoding GAL4-Like Transcription Factor in Aspergillus nidulans)

  • 박재신;한동민
    • 미생물학회지
    • /
    • 제49권1호
    • /
    • pp.8-16
    • /
    • 2013
  • sndA 유전자(AN3911) 하위에 위치하고 있는 GAL4형 전사인자를 암호화하는 유전자(AN3912)에 대해 분석하였다. 이 전사인자는 Zn(II)2Cys6 binuclear cluster DNA-binding domain 과 전사활성부위를 모두 가지고 있는 전형적 진균 특이 전사인자로서 해당 유전자는 gtfA (gal4 type transcription factor)라 명명되었다. 이 유전자의 ORF는 762개의 아미노산으로 구성되어 있고 3개의 intron이 그 안에 존재하였다. gtfA 유전자의 결실돌연변이는 무성포자생성이 감소하고 대신 유성생식기관이 증가하는 형질을 보여주었다. 과다발현균주는 높은 포도당 농도가 주어지면 유성생식이 늦어지는 형질을 나타내었다. gtfA 유전자는 영양생장 후반부와 유성분화 초기단계에서 높은 발현량을 보이고 전생활사를 통해 비교적 일정하게 발현되었다. gtfA의 전사는 일부 유성(NsdD, VeA) 및 무성(FluG, FadA, SfaD) 분화 조절자들에 의해 크게 영향을 받지 않았다. 반면 GtfA는 nsdC 유전자의 발현을 억제하는 것으로 나타났다. 종합하여 볼 때, GtfA는 분화 결정시기에 nsdC의 발현을 억제함으로써 유성분화보다는 무성분화로 유도되도록 조절 할 것으로 추정된다.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

High-Level Expression and Characterization of Single Chain Urokinase-type Plasminogen Activator(scu-PA) Produced in Recombinant Chinese Hamster Ovary(CHO) Cells

  • Kim, Jung-Seob;Min, Mi-Kyung;Jo, Eui-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권2호
    • /
    • pp.117-127
    • /
    • 2001
  • The high-level expression of a human single chain urokinase-type plasminogen activator (scu-PA) was achieved by employing a methotrexate (MTX)-dependent gene amplification system in Chinese hamster ovary (CHO) cells. By cotransfecting and coamplifying a scu-PA expression plasmid and dihydrofolate reductase (DHFR) minigene, several scu-PA expressing CHO cell lines were selected and gene-amplified. These recombinant cell lines, NGpUKs, secreted a completely processed scu-PA of 54 kD and up to 60mg/L was accumulated in the culture medium when they were adapted to an optimal MTX concentration. Over 95% of the scu-PA expressed was secreted in the culture medium and identified having the proper function of a plasminogen activator when activated by plasmin. Based on a genomic Southern analysis, a representative subclone, MGpUK-5, exhibited MTX-dependent scu-PA gene amplification, plus the initial single-copy gene of scu-PA eventually turned into about 150 copies of the amplified gene of scu-PA after gradual adaptation to 2.0$\mu$M of MTX. Meanwhile, the transcripts kof the scu-PA gene increased, although -early saturation of transcription was identified at 0.1$\mu$M of MTX. The scu-PA production by the MGpUK-5 subclone also increased relative to the gene amplification and increased transcripts, however, the relationship was not linearly proportional. Accordingly, since the MGpUK cell lines expressed elevated levels of enzymatically active scu-PA, these cell lines could be applied to the largescale production of scu-PA.

  • PDF

발정주기의 소 자궁내막에서 Progesterone이 Prostaglandin 합성효소와 Plasminogen Activator 발현에 미치는 영향 (Effect of Progesterone on Expression of Prostaglandin Synthases and Plasminogen Activator in Bovine Endometrium during Estrous Cycle)

  • 최수빈;황보용;정희태;양부근;박춘근
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.53-59
    • /
    • 2016
  • This study was to investigate effect of progesterone ($P_4$) on prostaglandin (PG) synthases and plasminogen activators (PAs) system in bovine endometrium during estrous cycle. Endometrium tissues were collected from bovine uterus on follicular and luteal phase and were incubated with culture medium containing 0 (Control), 0.2, 2, 20 and 200 ng/ml $P_4$ for 24 h. The $PGF_{2{\alpha}}$ synthase (PGFS), $PGE_2$ synthase (PGES), cyclooxygenase-2 (COX-2), urokinase PA (uPA), and PA inhibitors 1 (PAI-1) mRNA in bovine endometrium were analyzed using reverse transcription PCR and PA activity was measured using spectrophotometry. In results, COX-2 was higher at 2 ng/ml $P_4$ group than control group in luteal phase (p<0.05), but, it did not change in follicular phase. Contrastively, PGES was significantly increased in 2 ng/ml $P_4$ group compared to control group in follicular phase, but there were no significant differ among the treatments in luteal phase. uPA was no significant difference between $P_4$ treatment groups and control group in both of different phase. PAI-1 was decreased in 20 ng/ml $P_4$ group compared to control group in follicular phase (p<0.05). PA activity was decreased in 2 ng/ml $P_4$ group compared to other groups in follicular and luteal phase (p<0.05). In conclusion, we suggest that $P_4$ may influence to translation and post-translation process of PG production and PA activation in bovine endometrium.

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도 (Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells)

  • 전홍성
    • KSBB Journal
    • /
    • 제20권1호
    • /
    • pp.21-25
    • /
    • 2005
  • 흔하게 사용되어온 제초제인 paraquat는 파킨슨병의 원인이 될 수 있는 유력한 위험 요소이다. 헴산화효소-1(HO-1)은 산화적 스트레스와 소포체 스트레스의 marker인데, 여러 가지 자극에 의해 heme을 분해하여 biliverdin, 일산화탄소, 철 성분으로 전환시킨다 본 연구에서는 뇌의 흑색질 유래의 도파민 세포주 SN4741에서 paraquat가 시간별, 농도별로 HO-1을 활성화시키는 기작을 조사하였다. HO-1이 Paraquat에 의해 활성화되는 것은 주로 유전자 전사 수준에서 조절되었다. HO-1 유전자의 promoter와 5' enhancer인 El, E2를 결실시킨 실험에서, E2 enhancer가 도파민 세포에서 paraquat에 의한 HO-1 유전자 발현을 유도하는 핵심 부위로 판명되었다 E2 enhancer 부위를 돌연변이 시킨 실험 결과는 전사인자 활성 단백질-1 (AP-1) 결합부위를 통해 HO-1 발현이 유도됨을 밝히게 되었다. 또한, 도파민 세포에서 HO-1 유전자 발현의 조절과 신호전달 과정의 관계를 조사하기 위해 MAP kinase들의 특이적 저해제를 처리하고 paraquat로 자극을 준 결과, JNK 저해제인 SP600125가 가장 현저하게 paraquat에 의한 HO-1 발현을 억제하였다. 결론적으로, 도파민 세포에서 paraquat가 HO-1을 유도하는 데는 E2 enhancer가 중요하게 작용하고, AP-1과 JNK 경로를 통해 HO-1 발현이 조절된다는 사실을 처음으로 밝히게 되었다.