DOI QR코드

DOI QR Code

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa (Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine) ;
  • Ju, Uk-Il (Departments of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Song, Jung-Yup (Departments of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Chun, Yang-Sook (Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine)
  • Received : 2014.06.26
  • Accepted : 2014.08.25
  • Published : 2014.10.31

Abstract

Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

Keywords

References

  1. Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C.A., Igarashi, K., Kanno, J., et al. (2011). PKAdependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat. Cell Biol. 13, 668-675. https://doi.org/10.1038/ncb2228
  2. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039-1043. https://doi.org/10.1126/science.1076997
  3. Cho, Y.W., Hong, S., Jin, Q., Wang, L., Lee, J.E., Gavrilova, O., and Ge, K. (2009). Histone methylation regulator PTIP is required for PPAR$\gamma$ and C/EBPalpha expression and adipogenesis. Cell Metabol. 10, 27-39. https://doi.org/10.1016/j.cmet.2009.05.010
  4. Debril, M.B., Gelman, L., Fayard, E., Annicotte, J.S., Rocchi, S., and Auwerx, J. (2004). Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J. Biol. Chem. 279, 16677-16686. https://doi.org/10.1074/jbc.M312288200
  5. Fortschegger, K., and Shiekhattar, R. (2011). Plant homeodomain fingers form a helping hand for transcription. Epigenetics 6, 4-8. https://doi.org/10.4161/epi.6.1.13297
  6. Fox, K.E., Fankell, D.M., Erickson, P.F., Majka, S.M., Crossno, J.T., and Klemm, D.J. (2006). Depletion of cAMP-response elementbinding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/Enhancer-binding protein (C/EBP)$\alpha$, C/EBP$\beta$, or PPAR$\gamma$2. J. Biol. Chem. 281, 40341-40353. https://doi.org/10.1074/jbc.M605077200
  7. Friedman, J.M. (2000). Obesity in the new millennium. Nature 404, 632-634.
  8. Ghosh, A., Ghosh, S., Maiti, G.P., Mukherjee, S., Mukherjee, N., Chakraborty, J., Roy, A., Roychoudhury, S., and Panda, C.K. (2012). Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck. Ann. Surg. Oncol. 19 Suppl 3, S528-538. https://doi.org/10.1245/s10434-011-1991-x
  9. Kudo, M., Sugawara, A., Uruno, A., Takeuchi, K., and Ito, S. (2004). Transcription suppression of peroxisome proliferator-activated receptor $\gamma$2 gene expression by tumor necrosis factor $\alpha$via an inhibition of CCAAT/enhancer-binding protein during the early stage of adipocyte differentiation. Endocrinology 145, 4948-4956. https://doi.org/10.1210/en.2004-0180
  10. Lai, P.H., Wang, W.L., Ko, C.Y., Lee, Y.C., Yang, W.M., Shen, T.W., Chang, W.C., and Wang, J.M. (2008). HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim. Biophy. Acta 1783, 1803-1814. https://doi.org/10.1016/j.bbamcr.2008.06.008
  11. Margueron, R., Trojer, P., and Reinberg, D. (2005). The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163-176. https://doi.org/10.1016/j.gde.2005.01.005
  12. Musri, M.M., Carmona, M.C., Hanzu, F.A., Kaliman, P., Gomis, R., and Parrizas, M. (2010). Histone demethylase LSD1 regulates adipogenesis. J. Biol. Chem. 285, 30034-30041. https://doi.org/10.1074/jbc.M110.151209
  13. Okuno, Y., Ohtake, F., Igarashi, K., Kanno, J., Matsumoto, T., Takada, I., Kato, S., and Imai, Y. (2013). Epigenetic regulation of adipogenesis by PHF2 histone demethylase. Diabetes 62, 1426-1434. https://doi.org/10.2337/db12-0628
  14. Rosen, E.D., and Spiegelman, B.M. (2000). MOLECULAR REGULATION OF ADIPOGENESIS. Ann. Rev. Cell Dev. Biol. 16, 145-171. https://doi.org/10.1146/annurev.cellbio.16.1.145
  15. Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., and Mortensen, R.M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617. https://doi.org/10.1016/S1097-2765(00)80211-7
  16. Shi, X.M., Blair, H.C., Yang, X., McDonald, J.M., and Cao, X. (2000). Tandem repeat of C/EBP binding sites mediates PPAR$\gamma$2 gene transcription in glucocorticoid-induced adipocyte differentiation. J. Cell. Biochem. 76, 518-527. https://doi.org/10.1002/(SICI)1097-4644(20000301)76:3<518::AID-JCB18>3.0.CO;2-M
  17. Stender, J.D., Pascual, G., Liu, W., Kaikkonen, M.U., Do, K., Spann, N.J., Boutros, M., Perrimon, N., Rosenfeld, M.G., and Glass, C.K. (2012). Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28-38. https://doi.org/10.1016/j.molcel.2012.07.020
  18. Sun, L.L., Sun, X.X., Xu, X.E., Zhu, M.X., Wu, Z.Y., Shen, J.H., Wu, J.Y., Huang, Q., Li, E.M., and Xu, L.Y. (2013). Overexpression of Jumonji AT-rich interactive domain 1B and PHD finger protein 2 is involved in the progression of esophageal squamous cell carcinoma. Acta Histochem. 115, 56-62. https://doi.org/10.1016/j.acthis.2012.04.001
  19. Wakabayashi, K., Okamura, M., Tsutsumi, S., Nishikawa, N.S., Tanaka, T., Sakakibara, I., Kitakami, J., Ihara, S., Hashimoto, Y., Hamakubo, T., et al. (2009). The peroxisome proliferatoractivated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol. Cell. Biol. 29, 3544-3555. https://doi.org/10.1128/MCB.01856-08
  20. Wang, L., Jin, Q., Lee, J.E., Su, I.H., and Ge, K. (2010). Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl. Acad. Sci. USA 107, 7317-7322. https://doi.org/10.1073/pnas.1000031107
  21. Wang, L., Xu, S., Lee, J.E., Baldridge, A., Grullon, S., Peng, W., and Ge, K. (2013). Histone H3K9 methyltransferase G9a represses PPAR$\gamma$ expression and adipogenesis. EMBO J. 32, 45-59.
  22. Wen, H., Li, J., Song, T., Lu, M., Kan, P.-Y., Lee, M.G., Sha, B., and Shi, X. (2010). Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J. Biol. Chem. 285, 9322-9326. https://doi.org/10.1074/jbc.C109.097667
  23. Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360. https://doi.org/10.1101/gad.927301

Cited by

  1. Epigenetic modulation of metabolic decisions vol.33, 2015, https://doi.org/10.1016/j.ceb.2014.12.005
  2. Jumonji histone demethylases as emerging therapeutic targets vol.105, 2016, https://doi.org/10.1016/j.phrs.2016.01.026
  3. The Impact of Epigenetics on Mesenchymal Stem Cell Biology vol.231, pp.11, 2016, https://doi.org/10.1002/jcp.25371
  4. Human adipogenesis is associated with genome-wide DNA methylation and gene-expression changes vol.8, pp.12, 2016, https://doi.org/10.2217/epi-2016-0077
  5. A genome-wide association study of body mass index across early life and childhood vol.44, pp.2, 2015, https://doi.org/10.1093/ije/dyv077
  6. The association of AKNA gene polymorphisms with knee osteoarthritis suggests the relevance of this immune response regulator in the disease genetic susceptibility vol.45, pp.2, 2018, https://doi.org/10.1007/s11033-018-4148-1
  7. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-04361-y
  8. Epigenetic regulation of megakaryocytic and erythroid differentiation by PHF2 histone demethylase vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26438
  9. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26497
  10. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells vol.23, pp.2, 2014, https://doi.org/10.1016/j.celrep.2018.03.051
  11. MiR-221 Promotes Hepatocellular Carcinoma Cells Migration via Targeting PHF2 vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/4371405
  12. Histone demethylase PHF2 activates CREB and promotes memory consolidation vol.20, pp.9, 2014, https://doi.org/10.15252/embr.201845907
  13. PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors vol.116, pp.39, 2014, https://doi.org/10.1073/pnas.1903188116
  14. Control of mesenchymal stem cell biology by histone modifications vol.10, pp.1, 2020, https://doi.org/10.1186/s13578-020-0378-8
  15. The First Genome-Wide Association Study for Type 2 Diabetes in Youth: The Progress in Diabetes Genetics in Youth (ProDiGY) Consortium vol.70, pp.4, 2021, https://doi.org/10.2337/db20-0443