High-Level Expression and Characterization of Single Chain Urokinase-type Plasminogen Activator(scu-PA) Produced in Recombinant Chinese Hamster Ovary(CHO) Cells

  • Published : 2001.03.01

Abstract

The high-level expression of a human single chain urokinase-type plasminogen activator (scu-PA) was achieved by employing a methotrexate (MTX)-dependent gene amplification system in Chinese hamster ovary (CHO) cells. By cotransfecting and coamplifying a scu-PA expression plasmid and dihydrofolate reductase (DHFR) minigene, several scu-PA expressing CHO cell lines were selected and gene-amplified. These recombinant cell lines, NGpUKs, secreted a completely processed scu-PA of 54 kD and up to 60mg/L was accumulated in the culture medium when they were adapted to an optimal MTX concentration. Over 95% of the scu-PA expressed was secreted in the culture medium and identified having the proper function of a plasminogen activator when activated by plasmin. Based on a genomic Southern analysis, a representative subclone, MGpUK-5, exhibited MTX-dependent scu-PA gene amplification, plus the initial single-copy gene of scu-PA eventually turned into about 150 copies of the amplified gene of scu-PA after gradual adaptation to 2.0$\mu$M of MTX. Meanwhile, the transcripts kof the scu-PA gene increased, although -early saturation of transcription was identified at 0.1$\mu$M of MTX. The scu-PA production by the MGpUK-5 subclone also increased relative to the gene amplification and increased transcripts, however, the relationship was not linearly proportional. Accordingly, since the MGpUK cell lines expressed elevated levels of enzymatically active scu-PA, these cell lines could be applied to the largescale production of scu-PA.

Keywords

References

  1. J. Biol. Chem. v.261 Urokinase-related proteins in human urine;Isolation and characterization of single-chain urokinase (prouroki-nase) and urokinase-inhibitor complex Stump D.C.;M. Thienpont;D. Collen
  2. J. Biol. Chem. v.260 Proteolytic clevage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin Kasai S.;H. Arimura;M. Nishida;T. Suyama
  3. J. Am. Coll. Cardiol. v.24 New recombinant glycosylated prourokinase for treatment of patients with acute myocardial infarction Weaver W.D.;J.R. Hartmann;J.L. Anderson;P.S. Reddy;J.C. Sobolski;A.A. Sasahara
  4. J. Vasc. Surg. v.19 A comparison of thrombolytic therapy with operative revascularization in the initial treatment of acute peripheral arterial ischemia Ouriel K.;C.K. Shortell;J.A. DeWeese;R.M. Green;C.W. Francis;M.V. Azodo;O.H. Gutierrez;J.V. Manzione;C. Cox;V.J. Marde
  5. J. Biol. Chem. v.257 A proenzyme form of human urokinase Wun T.C.;L. Ossowski;E. Reich
  6. Hoppe-Seyler's Z. Physiol. Chem. v.363 The primary structure of high molecular mass urokinase from human urine;The complete amino acid sequence of the A chain Gunzler W.A.;G.J. Steffens;F. Otting;S.M. Kim;E. Frankus;L. Flohe
  7. J. Biol. Chem. v.267 Domain structure and interactions of recombinant urokinase-type plasminogen activator Novokhatny V.;L. Medved;A. Mazar;P. Marcotte;J. Henkin;K. Ingham
  8. Arch. Biochem. Biophys. v.220 Purification and partial characterization of a single-chain high-molecular-weight form of urokinase from human urine Husain S.S.;V. Gurewich;B. Lipinski
  9. J. Biol. Chem. v.261 The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin IChinose A.;K. Fujikawa;T. Suyama
  10. J. Biol. Chem. v.266 Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA) Kobayashi H.;M. Schmitt;L. Goretzki;N. Chucholowski;J. Calvete;M. Kramer;W.A. Gunzler;F. Janicke;H. graeff
  11. Thromb. Haemost. v.71 Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor ⅩⅡ dependent intinsic pathway of fibrinolysis Loza J.P.;V. Gurewich;M. Johnstone;R. Pannell
  12. J. Clin. Invest. v.73 Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (prourokinase);A study in vitro and in two animal species Gurewich V.;R. Pannell;S. Louis;P. Kelley;R.L. Suddith;R. Greenlee
  13. Thromb. Haemost. v.52 Biological and thrombolytic properties of proenzyme and active forms of human urokinase: I. Fibrinolytic and fibrinogenolytic properties in human plasma in vitro of urokinases obtained from human urine or by recombinat DNA technology Zamarron C.;H.R. Lijnen;B. Van Hoef;D. Collen
  14. Biochemistry v.31 Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Gluplasminogen activation;A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK Liu J.N.;V. Gurewich
  15. Thromb. Haemost. v.52 Biological and thrombolytic properties of proenzyme and active forms of human urokinase: Ⅲ. Thrombolytic properties of natural and recombinant urokinase in rabbits with experimental jugular vein thrombosis Collen D.;J.M. Stassen;M. Blaber;M. Winkler;M. Verstraete
  16. J. Cardiovasc. Pharmacol. v.9 Thrombolysis with recombinant human single-chain urokinase-type plasminogen activator (rscu-PA): dose-response in dogs with coronary artery thrombosis Van de Werf F.;I.K. Jang;D. Collen
  17. Jpn. Heart J. v.36 Low incidence of hemorrhagic infarction following coronary reperfusion with nasaruplase in a canine model of acute myocardial infarction;Comparison with recombinant t-PA Kido H.;K. Hayashi;T. Uchida;M. Watanabe
  18. New Therapeutic Agents in Thrombosis and Thromobolysis Recombinant glycosylated pro-urokinase: biochemistry, pharmacology, and early clinical experience Credo R.B.;J.C. Sobolski;W.D. Weaver;J.R. Hartmann
  19. FEBS Lett. v.318 Pro-urokinase and prekallikrein are both associated with platelets;Implications for the intrinsic pathway of fibrinolysis and for therapeutic thrombolysis Gurewich V.;M. Johnstone;J.P. Loza;R. Pannell
  20. J. Biol. Chem. v.257 Isolation and characterization of urokinase from human plasma Wun T.C.;W.D. Schleuning;E. Reich
  21. Biochemistry v.21 Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody Nielsen L.S.;J.G. Hansen;L. Skriver;E.L. Wilson;K. Kaltoft;J. Zeuthen;K. Dano
  22. Biochim. Biophys. Acta. v.1293 Characterization of single chain urokinase-type plasminogen activator with a novel amino-acid substitution in the kringle structure Yoshimoto M.;Y. Ushiyama;M. Sakai;S. Tamaki;H. Hara;K. Takahashi;Y. Sawasaki;K. Hanada
  23. J. Biol. Chem. v.260 Primary structure of single-chain pro-urokinase Kasai S.;H. Arimura;M. Nishida;T. Suyama
  24. Gene v.36 Molecular cloning of cDNA coding for human preprourokinase Nagai M.;R. Hiramatsu;T. Kaneda;N. Hayasuke;H. Arimura;M. Nishida;T. Suyama
  25. DNA v.4 Molecular cloning, sequencing, and expression in Escherichia coli of human preprourokinase cDNA Jacobs P.;A. Cravador;R. Loriau;F. Brockly;B. Colau;P. Chuchana;A. van Elsen;A. Herzog;A. Bollen
  26. Nucleic Acids Res. v.13 The human urokinase-plasminogen activator gene and its promoter Riccio A.;G. Grimaldi;P. Verde;G. Sebastio;S. Boast;F. Blasi
  27. Semin. Thromb. Hemost. v.16 Evolutionary assembly of blood coagulation proteins Patthy L.
  28. Appl. Microbiol. Biotechnol. v.36 High expression vectors for the production of recombinant single-chain urinary plasminogen activator from Escherichia coli Brigelius-Flohe R.;G. Steffens;W. Strassburger;L. Flohe
  29. J. Biol. Chem. v.265 Characterization of a nonglycosylated single chain urinary plasminogen activator secreted from yeast Melnick L.M.;B.G. Turner;P. Puma;B. Price-Tillotson;K.A. Salvato;D.R. Dumais;D.T. Moir;R.J. Broeze;G.C. Avgerinos
  30. J. Biol. Chem. v.262 Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158 Nelles L.;H.R. Lijnen;D. Collen;W.E. Holmes
  31. Bio/Technol. v.8 Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells Avgerinos G.C.;D. Drapeau;J.S. Socolow;J.I. Mao;K. Hsiao;R.J. Broeze
  32. Cytotechnology v.13 Stable production of recombinant pro-urokinase by human lymphoblastoid Namalwa KJM-1 cells: host-cell dependency of the expressed-protein stability Satoh M.;S. Hosoi;H. Miyaji;S. Itoh;S. Sato
  33. Bio/Technol. v.13 Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium Zang M.;H. Trautmann;C. Gandor;F. Messi;F. Asselbergs;C. Leist;A. Fiechter;J. Reiser
  34. Br. Heart J. v.48 Transmural, haemorrhagic myocardial infarction after intracoronary streptokinase;Clinical, angiographic, and necropsy findings Mathey D.G.;J. Schofer;K.H. Kuck;U. Beil;G. Kloppel
  35. Circulation v.79 Tissue-type plasminogen activator mutants;Theoretical and clinical considerations Bang N.U.
  36. Fibrinol. Proteolysis v.11 Thrombolytic therapy of acute myocardial infarction with saruplase, a single-chain urokinase-type plasminogen activator (scu-PA) from recombinant bacteria Tebbe U.;W.A. Gunzler;G.R. Hopkins;T. Grymbowski;H. Barth
  37. Circulation v.72 Coronary thrombolysis in dogs with intravenously administered human prourokinase Collen D.;D. Stump;F. van de Werf;I.K. Jang;M. Nobuhara;H.R. Lijnen
  38. Proc. Natl. Acad. Sci. USA v.77 Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity Urlaub G.;L.A. Chasin
  39. J. Mol. Biol. v.159 Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene Kaufman R.J.;P.A. Sharp
  40. Mol. Cell. Biol. v.5 Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells Kaufman R.J.;L.C. Wasley;A.J. Spiliotes;S.D. Gossels;S.A. Latt;G.R. Larsen;R.M. Kay
  41. Proc. Natl. Acad. Sci. USA v.80 Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein Gralnick H.R.;S.B. Williams;M.E. Rick
  42. Bio/Technol. v.6 Production of recombinant human erythropoiwtin in mammalian cells: host-cell dependency of biological activity of the cloned glycoprotein Goto M.;K. Akai;A. Murakanu;C. Hashimoto;E. Tsuda;M. Ueda;G. Kawanishi;N. Takahashi;A. Ishimoto;H. Chiba;R. Sasaki
  43. Methods Enzymol. v.185 Selection and coamplification of heterologous genes in mammalian cells Kaufman R.J.
  44. Bio/Technol. v.9 High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells Page M.J.;M.A. Sydenham
  45. Biotechnol. Bioprocess Eng. v.5 Development of high density mammalian cell culture system for the production of tissue-type plasminogen Park B.G.;J.M. Chun;G.T. Lee;I.H. Kim;Y.H. Jeong
  46. Mol. Cell. Biol. v.1 Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line Kaufman R.J.;R.T. Schimke
  47. Cell v.57 Recent progress in understanding mechanisms of mammalian DNA amplification Start G.R.;M. Debatisse;E. Giulotto;G.M. Wahl
  48. Biotechnol. Bioeng. v.58 Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure Kim S.J.;N.S. Kim;C.J. Ryu;H.J. Hong;G.M. Lee
  49. Cell v.33 Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells Urlaub G.;E. Kas;A.M. Carothers;L.A. Chasin
  50. Cytotechnology v.17 The optimization of serum-free medium for the production of the scu-PA by the addition of algal extracts Kim H.G.;K.D. Sung;M.S. Ham;K.H. Chung;K.H. Chung;H.Y. Lee
  51. Bioproc. Eng. v.19 Performance study of perfusion cultures for the production of single-chain urokinase-type plasminogen activator (scu-PA) in a 2.5 L spin-filter bioreactor Jo E.C.;J.W. Yun;S.I. Jung;K.H. Chung;J.H. Kim
  52. Somat. Cell. Mol. Genet. v.13 Polyadenylation of Chinese hamster dihydrofolate reductase genomic genes and minigenes after gene transfer Venolia L.;G. Urlaub;L.A. Chasin
  53. Mol. Cell. Biol. v.4 Phenotypic expression in Escherichia coli and nucleotide sequence of two Chinese hamster lung cell cDNAs encoding different dihydrofolate reductases Melera P.W.;J.P. Davide;C.A. Hession;K.W. Scotto
  54. Mol. Cell. Biol. v.6 Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5' region of the CHO dhfr gene Mitchell P.J.;A.M. Carothers;J.H. Han;J.D. Harding;E. Kas;L. Venolia;L.A. Chasin
  55. Biotechnol. Bioprocess Eng. v.5 Fermanent mycoplasma removal from tissue culture cells: a genetic approach Mohr G.;A. Preininger;M. Himmelspach;B. Plaimauer;C. Arbesser;H. York;F. Dorner;Y. Schlokat
  56. Biotechnol. Bioprocess Eng. v.5 Immobilization of rat kidney glomerular mesangal cell and its coculture with glomerular epitherial cell Kida T.;S. Fujishima;M. Matsumura;P.C. Wang
  57. Thromb. Haemost. v.41 Studies on the fibrinolytic system in human plasma: quantitative determination of plasminogen activators and proactivators Kuft C.
  58. Thromb. Haemost. v.6 Differential detection of single-chain and two-chain urokinase-type plasminogen activator by a new immunoadsorbent-amidolytic assay (IAA) Corti A.;M.L. Nolli;G. Cassani
  59. Genet. Anal. Tech. Appl. v.8 Analysis of genes and chromosomes by nonisotopic in situ hybridization Lichter P.;A.L. Boyle;T. Cremer;D.C Ward
  60. Vitro Cell. Dev. Biol. v.26 Chinese hamster ovary cells continuously secrete a cysteine endopeptidase Satoh M.;S. Hosoi;S. Sato
  61. J. Biol. Chem. v.263 Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells Kaufman R.J.;L.C. Wasley;A.J. Dorner
  62. Biochem. Biophys. Res. Commun. v.171 Carbohydrate composition and presence of a fucoseprotein linkage in recombinant human pro-urokinase Kentzer E.J.;A. Buko;G. Menon;V.K. Sarin
  63. Thromb. Haemost. v.68 The influence of glycosylation on the catalytic and fibrinolytic properties of pro-urokinase Lenich C.;R. Pannell;J. Henkin;V. Gurewich
  64. Nature v.341 A nuclear DNA attachment element mediates elevated and position-independent gene activity Stief A.;D.M. Winter;W.H. Stratling;A.E. Sippel
  65. Biochemistry v.30 Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters Klehr D.;K. Maass;J. Bode
  66. Cell v.77 Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila Dorer D.R.;S. Henikoff
  67. Mol. Cell. Biol. v.15 Position-independent transgene expression mediated by boundary elements from the apolipoprotein b chromatin domain KAlos M.;R.E. Fournier