DOI QR코드

DOI QR Code

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee (Department of Life Science, Ewha Womans University) ;
  • Lee, Na Kyung (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Soo Young (Department of Life Science, Ewha Womans University)
  • Received : 2017.09.26
  • Accepted : 2017.10.16
  • Published : 2017.10.31

Abstract

Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Keywords

References

  1. Aliprantis, A.O., Ueki, Y., Sulyanto, R., Park, A., Sigrist, K.S., Sharma, S.M., Ostrowski, M.C., Olsen, B.R., and Glimcher, L.H. (2008). NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 118, 3775-3789. https://doi.org/10.1172/JCI35711
  2. Asagiri, M., and Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40, 251-264. https://doi.org/10.1016/j.bone.2006.09.023
  3. Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E.F., Mak, T.W., Serfling, E., et al. (2005). Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
  4. Boyle, W.J., Simonet, W.S. and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature. 423, 337-342. https://doi.org/10.1038/nature01658
  5. Cella, M., Buonsanti, C., Strader, C., Kondo, T., Salmaggi, A., and Colonna, M. (2003). Impaired differentiation of osteoclasts in TREM- 2-deficient individuals. J. Exp. Med. 198, 645-651. https://doi.org/10.1084/jem.20022220
  6. Chambers, T.J. and Fuller, K. (2011). How are osteoclasts induced to resorb bone? Ann. N Y Acad. Sci. 1240, 1-6. https://doi.org/10.1111/j.1749-6632.2011.06249.x
  7. Cheng, X., Kinosaki, M., Murali, R., and Greene, M.I. (2003). The TNF receptor superfamily: role in immune inflammation and bone formation. Immunol. Res. 27, 287-294. https://doi.org/10.1385/IR:27:2-3:287
  8. Choi, H.K., Kang, H.R., Jung, E., Kim, T.E., Lin, J.J. and Lee, S.Y. (2013). Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 23, 524-536. https://doi.org/10.1038/cr.2013.33
  9. Darnay, B.G., Haridas, V., Ni, J., Moore, P.A. and Aggarwal, B.B. (1998). Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c- Jun N-terminal kinase. J. Biol. Chem. 273, 20551-20555. https://doi.org/10.1074/jbc.273.32.20551
  10. David, J.P., Sabapathy, K., Hoffmann, O., Idarraga, M.H. and Wagner, E.F. (2002). JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115, 4317-4325. https://doi.org/10.1242/jcs.00082
  11. Dougall, W.C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M.E., Maliszewski, C.R., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412-2424. https://doi.org/10.1101/gad.13.18.2412
  12. Duran, A., Serrano, M., Leitges, M., Flores, J.M., Picard, S., Brown, J.P., Moscat, J., and Diaz-Meco, M.T. (2004). The atypical PKCinteracting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev. Cell. 6, 303-309. https://doi.org/10.1016/S1534-5807(03)00403-9
  13. Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290. https://doi.org/10.1038/nm1194
  14. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E.W., Brown, K.D., Leonardi, A., Tran, T., Boyce, B.F. and Siebenlist, U. (1997). Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. https://doi.org/10.1101/gad.11.24.3482
  15. Fumoto, T., Takeshita, S., Ito, M., and Ikeda, K. (2014). Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis. J. Bone Miner Res. 29, 830-842. https://doi.org/10.1002/jbmr.2096
  16. Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96. https://doi.org/10.1016/S0092-8674(02)00703-1
  17. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., and Wagner, E.F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448. https://doi.org/10.1126/science.7939685
  18. He, Y., Staser, K., Rhodes, S.D., Liu, Y., Wu, X., Park, S.J., Yuan, J., Yang, X., Li, X., Jiang, L., et al. (2011). Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One 6, e24780. https://doi.org/10.1371/journal.pone.0024780
  19. Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
  20. Humphrey, M.B., Daws, M.R., Spusta, S.C., Niemi, E.C., Torchia, J.A., Lanier, L.L., Seaman, W.E., and Nakamura, M.C. (2006). TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J. Bone Miner Res. 21, 237-245.
  21. Ikeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S.V., Hata, K., Yamashita, K., Hiraga, T., Watanabe, T., et al. (2004). Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J. Clin. Invest. 114, 475- 484. https://doi.org/10.1172/JCI200419657
  22. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289. https://doi.org/10.1038/nm1197-1285
  23. Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050. https://doi.org/10.1074/jbc.M111.256768
  24. Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2, 389- 406. https://doi.org/10.1016/S1534-5807(02)00157-0
  25. Kim, N., Takami, M., Rho, J., Josien, R., and Choi, Y. (2002). A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201-209. https://doi.org/10.1084/jem.20011681
  26. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
  27. Kim, K., Lee, S.H., Ha Kim, J., Choi, Y., and Kim, N. (2008). NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  28. Kim, H., Choi, H.K., Shin, J.H., Kim, K.H., Huh, J.Y., Lee, S.A., Ko, C.Y., Kim, H.S., Shin, H.I., Lee, H.J., et al. (2009). Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest. 119, 813-825. https://doi.org/10.1172/JCI36809
  29. Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271-1280. https://doi.org/10.1093/emboj/20.6.1271
  30. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763. https://doi.org/10.1038/nature02444
  31. Koga, T., Matsui, Y., Asagiri, M., Kodama, T., de Crombrugghe, B., Nakashima, K. and Takayanagi, H. (2005). NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11, 880-885. https://doi.org/10.1038/nm1270
  32. Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304-309. https://doi.org/10.1038/46303
  33. Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N., and Lee, S.Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852- 859. https://doi.org/10.1182/blood-2004-09-3662
  34. Li, J., Sarosi, I., Yan, X.Q., Morony, S., Capparelli, C., Tan, H.L., McCabe, S., Elliott, R., Scully, S., Van, G., et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571. https://doi.org/10.1073/pnas.97.4.1566
  35. Li, X., Udagawa, N., Itoh, K., Suda, K., Murase, Y., Nishihara, T., Suda, T., and Takahashi, N. (2002). p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 143, 3105-3113. https://doi.org/10.1210/endo.143.8.8954
  36. Lin, J., Lee, D., Choi, Y., and Lee, S.Y. (2015). The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci. Signal. 8, ra54. https://doi.org/10.1126/scisignal.2005867
  37. Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, G.S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., et al. (1999). TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-1024. https://doi.org/10.1101/gad.13.8.1015
  38. Mao, D., Epple, H., Uthgenannt, B., Novack, D.V., and Faccio, R. (2006). PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Invest. 116, 2869-2879. https://doi.org/10.1172/JCI28775
  39. Matsumoto, M., Kogawa, M., Wada, S., Takayanagi, H., Tsujimoto, M., Katayama, S., Hisatake, K., and Nogi, Y. (2004). Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279, 45969-45979. https://doi.org/10.1074/jbc.M408795200
  40. Miyauchi, Y., Ninomiya, K., Miyamoto, H., Sakamoto, A., Iwasaki, R., Hoshi, H., Miyamoto, K., Hao, W., Yoshida, S., Morioka, H., et al. (2010). The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 207, 751-762. https://doi.org/10.1084/jem.20091957
  41. Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K. and Sakurai, N. (2002). Receptor activator of NFkappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell Biol. 22, 992-1000. https://doi.org/10.1128/MCB.22.4.992-1000.2002
  42. Moon, J.B., Kim, J.H., Kim, K., Youn, B.U., Ko, A., Lee, S.Y., and Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 188, 163-169. https://doi.org/10.4049/jimmunol.1101254
  43. Naito, A., Azuma, S., Tanaka, S., Miyazaki, T., Takaki, S., Takatsu, K., Nakao, K., Nakamura, K., Katsuki, M., Yamamoto, T., et al. (1999). Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353-362. https://doi.org/10.1046/j.1365-2443.1999.00265.x
  44. Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M., Feng, J.Q., Bonewald, L.F., Kodama, T., Wutz, A., Wagner, E.F., et al. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231-1234. https://doi.org/10.1038/nm.2452
  45. Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252-256. https://doi.org/10.1038/18465
  46. Nishikawa, K., Nakashima, T., Hayashi, M., Fukunaga, T., Kato, S., Kodama, T., Takahashi, S., Calame, K. and Takayanagi, H. (2010). Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. USA 107, 3117-3122. https://doi.org/10.1073/pnas.0912779107
  47. Oikawa, T., Oyama, M., Kozuka-Hata, H., Uehara, S., Udagawa, N., Saya, H. and Matsuo, K. (2012). Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. J. Cell Biol. 197, 553-568. https://doi.org/10.1083/jcb.201111116
  48. Park, S.J., Huh, J.E., Shin, J., Park, D.R., Ko, R., Jin, G.R., Seo, D.H., Kim, H.S., Shin, H.I., Oh, G.T., et al. (2016). Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation. Sci. Rep. 6, 26186. https://doi.org/10.1038/srep26186
  49. Putney, J.W., Jr. (2005). Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 381-382. https://doi.org/10.1083/jcb.200503161
  50. Sheridan, C.M., Heist, E.K., Beals, C.R., Crabtree, G.R., and Gardner, P. (2002). Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J. Biol. Chem. 277, 48664-48676. https://doi.org/10.1074/jbc.M207029200
  51. Shin, J., Jang, H., Lin, J., and Lee, S.Y. (2014). PKCbeta positively regulates RANKL-induced osteoclastogenesis by inactivating GSK- 3beta. Mol. Cells 37, 747-752. https://doi.org/10.14348/molcells.2014.0220
  52. Shinohara, M., Koga, T., Okamoto, K., Sakaguchi, S., Arai, K., Yasuda, H., Takai, T., Kodama, T., Morio, T., Geha, R.S., et al. (2008). Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132, 794-806. https://doi.org/10.1016/j.cell.2007.12.037
  53. Taguchi, Y., Gohda, J., Koga, T., Takayanagi, H., and Inoue, J. (2009). A unique domain in RANK is required for Gab2 and PLCgamma2 binding to establish osteoclastogenic signals. Genes Cells 14, 1331- 1345. https://doi.org/10.1111/j.1365-2443.2009.01351.x
  54. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  55. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  56. Teitelbaum, S.L. and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
  57. Vaananen, H.K., Karhukorpi, E.K., Sundquist, K., Wallmark, B., Roininen, I., Hentunen, T., Tuukkanen, J., and Lakkakorpi, P. (1990). Evidence for the presence of a proton pump of the vacuolar H(+)- ATPase type in the ruffled borders of osteoclasts. J. Cell Biol. 111, 1305-1311. https://doi.org/10.1083/jcb.111.3.1305
  58. Wada, T., Nakashima, T., Oliveira-dos-Santos, A.J., Gasser, J., Hara, H., Schett, G. and Penninger, J.M. (2005). The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat. Med. 11, 394-399. https://doi.org/10.1038/nm1203
  59. Wagner, E.F. (2002). Functions of AP1 (Fos/Jun) in bone development. Ann. Rheum. Dis. 61 Suppl 2, ii40-42. https://doi.org/10.1136/ard.61.suppl_2.ii40
  60. Wang, Z.Q., Ovitt, C., Grigoriadis, A.E., Mohle-Steinlein, U., Ruther, U., and Wagner, E.F. (1992). Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745. https://doi.org/10.1038/360741a0
  61. Wong, B.R., Josien, R., Lee, S.Y., Vologodskaia, M., Steinman, R.M., and Choi, Y. (1998). The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359. https://doi.org/10.1074/jbc.273.43.28355
  62. Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H., and Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell. 4, 1041-1049. https://doi.org/10.1016/S1097-2765(00)80232-4
  63. Xiong, J., Onal, M., Jilka, R.L., Weinstein, R.S., Manolagas, S.C., and O'Brien, C.A. (2011). Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235-1241. https://doi.org/10.1038/nm.2448
  64. Yagi, M., Ninomiya, K., Fujita, N., Suzuki, T., Iwasaki, R., Morita, K., Hosogane, N., Matsuo, K., Toyama, Y., Suda, T., et al. (2007). Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. J. Bone Miner Res. 22, 992-1001. https://doi.org/10.1359/jbmr.070401
  65. Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., et al. (2007). NFkappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282, 18245-18253. https://doi.org/10.1074/jbc.M610701200
  66. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  67. Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu, O.K., Vologodskaia, M., Yim, M., et al. (2002). Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447. https://doi.org/10.1038/nature00888
  68. Zaidi, M. (2007). Skeletal remodeling in health and disease. Nat. Med. 13, 791-801. https://doi.org/10.1038/nm1593
  69. Zhao, B., Takami, M., Yamada, A., Wang, X., Koga, T., Hu, X., Tamura, T., Ozato, K., Choi, Y., Ivashkiv, L.B., et al. (2009). Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 15, 1066-1071. https://doi.org/10.1038/nm.2007
  70. Zou, W., Kitaura, H., Reeve, J., Long, F., Tybulewicz, V.L., Shattil, S.J., Ginsberg, M.H., Ross, F.P., and Teitelbaum, S.L. (2007). Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877-888. https://doi.org/10.1083/jcb.200611083

Cited by

  1. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02263
  2. Isosteviol Derivative Inhibits Osteoclast Differentiation and Ameliorates Ovariectomy-Induced Osteoporosis vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29257-1
  3. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα vol.68, pp.2, 2019, https://doi.org/10.1007/s00011-018-1209-9
  4. 치자 추출물이 RANKL 유도 파골세포 형성 및 골 흡수에 미치는 영향 vol.38, pp.6, 2017, https://doi.org/10.22246/jikm.2017.38.6.1035
  5. 치자 추출물이 RANKL 유도 파골세포 형성 및 골 흡수에 미치는 영향 vol.38, pp.6, 2017, https://doi.org/10.22246/jikm.2017.38.6.1035
  6. Ubiquitin-dependent proteolysis of CXCL7 leads to posterior longitudinal ligament ossification vol.13, pp.5, 2017, https://doi.org/10.1371/journal.pone.0196204
  7. TRAF6 Distinctly Regulates Hematopoietic Stem and Progenitors at Different Periods of Development in Mice vol.41, pp.8, 2018, https://doi.org/10.14348/molcells.2018.0191
  8. Lumichrome inhibits osteoclastogenesis and bone resorption through suppressing RANKL‐induced NFAT activation and calcium signaling vol.233, pp.11, 2017, https://doi.org/10.1002/jcp.26841
  9. Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113698
  10. Cysteinyl leukotriene receptor 1 (cysLT1R) regulates osteoclast differentiation and bone resorption vol.46, pp.suppl3, 2018, https://doi.org/10.1080/21691401.2018.1489264
  11. Myeloid-Derived Suppressor Cells at the Intersection of Inflammaging and Bone Fragility vol.47, pp.8, 2018, https://doi.org/10.1080/08820139.2018.1552360
  12. Sera of patients with axial spondyloarthritis (axSpA) enhance osteoclastogenic potential of monocytes isolated from healthy individuals vol.19, pp.None, 2017, https://doi.org/10.1186/s12891-018-2356-4
  13. Modulating calcium‐mediated NFATc1 and mitogen‐activated protein kinase deactivation underlies the inhibitory effects of kavain on osteoclastogenesis and bone resorption vol.234, pp.1, 2017, https://doi.org/10.1002/jcp.26893
  14. The application of nanogenerators and piezoelectricity in osteogenesis vol.20, pp.1, 2017, https://doi.org/10.1080/14686996.2019.1693880
  15. Phospholipase Cγ Signaling in Bone Marrow Stem Cell and Relevant Natural Compounds Therapy vol.14, pp.None, 2019, https://doi.org/10.2174/1574888x14666191107103755
  16. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? vol.10, pp.None, 2017, https://doi.org/10.3389/fimmu.2019.00375
  17. Hexane Fraction of Turbo brunneus Inhibits Intermediates of RANK-RANKL Signaling Pathway and Prevent Ovariectomy Induced Bone Loss vol.10, pp.None, 2019, https://doi.org/10.3389/fendo.2019.00608
  18. Tetrandrine enhances the ubiquitination and degradation of Syk through an AhR-c-src-c-Cbl pathway and consequently inhibits osteoclastogenesis and bone destruction in arthritis vol.10, pp.2, 2017, https://doi.org/10.1038/s41419-018-1286-2
  19. Gene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway vol.22, pp.2, 2017, https://doi.org/10.22038/ijbms.2018.29498.7123
  20. Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells vol.20, pp.6, 2017, https://doi.org/10.3390/ijms20061439
  21. Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca2+/Calmodulin-Dependent Protein Kinase II vol.104, pp.4, 2017, https://doi.org/10.1007/s00223-018-0499-9
  22. Cryptotanshinone inhibits RANKL‐induced osteoclastogenesis by regulating ERK and NF‐κB signaling pathways vol.120, pp.5, 2019, https://doi.org/10.1002/jcb.28008
  23. G protein‐coupled receptor 119 is involved in RANKL‐induced osteoclast differentiation and fusion vol.234, pp.7, 2017, https://doi.org/10.1002/jcp.27805
  24. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases vol.20, pp.14, 2017, https://doi.org/10.3390/ijms20143576
  25. Benzylideneacetone Derivatives Inhibit Osteoclastogenesis and Activate Osteoblastogenesis Independently Based on Specific Structure-Activity Relationship vol.62, pp.13, 2017, https://doi.org/10.1021/acs.jmedchem.9b00270
  26. Activation of the Peroxisome Proliferator-Activated Receptor γ Coactivator 1β/NFATc1 Pathway in Circulating Osteoclast Precursors Associated With Bone Destruction in Rheumatoid Arthritis vol.71, pp.8, 2017, https://doi.org/10.1002/art.40868
  27. Extracellular Signal-Regulated Kinase: A Regulator of Cell Growth, Inflammation, Chondrocyte and Bone Cell Receptor-Mediated Gene Expression vol.20, pp.15, 2017, https://doi.org/10.3390/ijms20153792
  28. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? vol.58, pp.8, 2019, https://doi.org/10.1093/rheumatology/kez218
  29. Fermented Sea Tangle (Laminaria japonica Aresch) Suppresses RANKL-Induced Osteoclastogenesis by Scavenging ROS in RAW 264.7 Cells vol.8, pp.8, 2017, https://doi.org/10.3390/foods8080290
  30. PSTP-3,5-Me Inhibits Osteoclast Differentiation and Bone Resorption vol.24, pp.18, 2019, https://doi.org/10.3390/molecules24183346
  31. Specification of Sprouty2 functions in osteogenesis in in vivo context vol.15, pp.4, 2017, https://doi.org/10.1080/15476278.2019.1656995
  32. Role of APD-Ribosylation in Bone Health and Disease vol.8, pp.10, 2019, https://doi.org/10.3390/cells8101201
  33. Ligustilide suppresses RANKL‐induced osteoclastogenesis and bone resorption via inhibition of RANK expression vol.120, pp.11, 2019, https://doi.org/10.1002/jcb.29153
  34. ST5 Positively Regulates Osteoclastogenesis via Src/Syk/Calcium Signaling Pathways vol.42, pp.11, 2019, https://doi.org/10.14348/molcells.2019.0189
  35. Tatarinan T, an α‐asarone‐derived lignin, attenuates osteoclastogenesis induced by RANKL via the inhibition of NFATc1/c‐Fos expression vol.43, pp.12, 2019, https://doi.org/10.1002/cbin.11197
  36. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment vol.8, pp.12, 2019, https://doi.org/10.3390/jcm8122091
  37. KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy vol.15, pp.12, 2017, https://doi.org/10.1080/15548627.2019.1596491
  38. A simple and robust reporter gene assay for measuring the bioactivity of anti-RANKL therapeutic antibodies vol.9, pp.69, 2019, https://doi.org/10.1039/c9ra07328k
  39. Characterization of Tissue-Engineered Human Periosteum and Allograft Bone Constructs: The Potential of Periosteum in Bone Regenerative Medicine vol.209, pp.2, 2017, https://doi.org/10.1159/000509036
  40. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s248848
  41. Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL) vol.25, pp.1, 2017, https://doi.org/10.3390/molecules25010206
  42. Hippuric acid and 3‐(3‐hydroxyphenyl) propionic acid inhibit murine osteoclastogenesis through RANKL‐RANK independent pathway vol.235, pp.1, 2017, https://doi.org/10.1002/jcp.28998
  43. Ferryl Hemoglobin Inhibits Osteoclastic Differentiation of Macrophages in Hemorrhaged Atherosclerotic Plaques vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3721383
  44. An update on serum biomarkers to assess axial spondyloarthritis and to guide treatment decision vol.12, pp.None, 2017, https://doi.org/10.1177/1759720x20934277
  45. Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/4791786
  46. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis vol.11, pp.None, 2017, https://doi.org/10.3389/fendo.2020.00430
  47. Magnoflorine Suppresses MAPK and NF-κB Signaling to Prevent Inflammatory Osteolysis Induced by Titanium Particles In Vivo and Osteoclastogenesis via RANKL In Vitro vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.00389
  48. The Skeletal-Protecting Action and Mechanisms of Action for Mood-Stabilizing Drug Lithium Chloride: Current Evidence and Future Potential Research Areas vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.00430
  49. Density and function of actin-microdomains in healthy and NF1 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission depletion microscopy vol.53, pp.1, 2017, https://doi.org/10.1088/1361-6463/ab4838
  50. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy vol.8, pp.None, 2017, https://doi.org/10.3389/fcell.2020.00325
  51. Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling vol.8, pp.None, 2017, https://doi.org/10.3389/fcell.2020.598263
  52. TGFβ1 Regulates Human RANKL-Induced Osteoclastogenesis via Suppression of NFATc1 Expression vol.21, pp.3, 2017, https://doi.org/10.3390/ijms21030800
  53. METTL3 Modulates Osteoclast Differentiation and Function by Controlling RNA Stability and Nuclear Export vol.21, pp.5, 2017, https://doi.org/10.3390/ijms21051660
  54. Caldecrin inhibits lipopolysaccharide-induced pro-inflammatory cytokines and M1 macrophage polarization through the immunoreceptor triggering receptor expressed in myeloid cells-2 vol.523, pp.4, 2020, https://doi.org/10.1016/j.bbrc.2020.01.045
  55. Osthole‐loaded N‐octyl‐O‐sulfonyl chitosan micelles (NSC‐OST) inhibits RANKL‐induced osteoclastogenesis and prevents ovariectomy‐induced bone loss in r vol.24, pp.7, 2020, https://doi.org/10.1111/jcmm.15064
  56. Effect of TRPV1 Antagonist SC0030, a Potent Painkiller, on RANKL‐mediated Osteoclast Differentiation Involved in Bone Resorption vol.41, pp.4, 2020, https://doi.org/10.1002/bkcs.11992
  57. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development vol.5, pp.8, 2017, https://doi.org/10.1172/jci.insight.135446
  58. Endogenous Collagenases Regulate Osteoclast Fusion vol.10, pp.5, 2017, https://doi.org/10.3390/biom10050705
  59. Cedrol attenuates collagen-induced arthritis in mice and modulates the inflammatory response in LPS-mediated fibroblast-like synoviocytes vol.11, pp.5, 2017, https://doi.org/10.1039/d0fo00549e
  60. Bone-Targeting AAV-Mediated Gene Silencing in Osteoclasts for Osteoporosis Therapy vol.17, pp.None, 2017, https://doi.org/10.1016/j.omtm.2020.04.010
  61. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process vol.9, pp.6, 2017, https://doi.org/10.3390/cells9061552
  62. Heme Oxygenase-1 Is a Pivotal Modulator of Bone Turnover and Remodeling: Molecular Implications for Prostate Cancer Bone Metastasis vol.32, pp.17, 2017, https://doi.org/10.1089/ars.2019.7879
  63. Viburnum opulus L. Juice Phenolic Compounds Influence Osteogenic Differentiation in Human Osteosarcoma Saos-2 Cells vol.21, pp.14, 2017, https://doi.org/10.3390/ijms21144909
  64. Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis vol.40, pp.7, 2017, https://doi.org/10.1042/bsr20194387
  65. miR-346-3p promotes osteoclastogenesis via inhibiting TRAF3 gene vol.56, pp.7, 2020, https://doi.org/10.1007/s11626-020-00479-w
  66. Neobavaisoflavone inhibits osteoclastogenesis through blocking RANKL signalling‐mediated TRAF6 and c‐Src recruitment and NF‐κB, MAPK and Akt pathways vol.24, pp.16, 2017, https://doi.org/10.1111/jcmm.15543
  67. Surface modification of titanium manufactured through selective laser melting inhibited osteoclast differentiation through mitogen-activated protein kinase signaling pathway vol.35, pp.2, 2017, https://doi.org/10.1177/0885328220920457
  68. Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL‐induced osteoclastogenesis vol.24, pp.17, 2020, https://doi.org/10.1111/jcmm.15622
  69. Molecular and Cellular Mechanisms of Arthritis in Children and Adults: New Perspectives on Applied Photobiomodulation vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186565
  70. Heterogeneity and Actin Cytoskeleton in Osteoclast and Macrophage Multinucleation vol.21, pp.18, 2017, https://doi.org/10.3390/ijms21186629
  71. IL-23 induces the expression of pro-osteogenic factors in osteoclasts vol.45, pp.5, 2017, https://doi.org/10.1055/a-1099-9028
  72. The Role of the RANKL/RANK Axis in the Prevention and Treatment of Breast Cancer with Immune Checkpoint Inhibitors and Anti-RANKL vol.21, pp.20, 2020, https://doi.org/10.3390/ijms21207570
  73. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions vol.21, pp.20, 2020, https://doi.org/10.3390/ijms21207597
  74. Macrophage Polarization and Osteoporosis: A Review vol.12, pp.10, 2017, https://doi.org/10.3390/nu12102999
  75. NIK inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis vol.78, pp.7, 2017, https://doi.org/10.1093/femspd/ftaa045
  76. N -[2-(4-Acetyl-1-Piperazinyl)Phenyl]-2-(3-Methylphenoxy)Acetamide (NAPMA) Inhibits Osteoclast Differentiation and Protects against Ovariectomy-Induced Osteoporosis vol.25, pp.20, 2017, https://doi.org/10.3390/molecules25204855
  77. Transcriptomic profiling of feline teeth highlights the role of matrix metalloproteinase 9 (MMP9) in tooth resorption vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-75998-3
  78. Nepetin inhibits osteoclastogenesis by inhibiting RANKL‐induced activation of NF‐κB and MAPK signalling pathway, and autophagy vol.24, pp.24, 2017, https://doi.org/10.1111/jcmm.16055
  79. Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells vol.54, pp.11, 2017, https://doi.org/10.1080/10715762.2020.1742896
  80. USF3 modulates osteoporosis risk by targeting WNT16, RANKL, RUNX2, and two GWAS lead SNPs rs2908007 and rs4531631 vol.42, pp.1, 2017, https://doi.org/10.1002/humu.24126
  81. Isofraxidin Inhibits Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages Isolated from Sprague-Dawley Rats by Regulating NF-κB/NFAT vol.30, pp.None, 2017, https://doi.org/10.1177/0963689721990321
  82. Deciphering Myostatin’s Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.662908
  83. Therapeutic Effect of Matrine on Collagen-Induced Arthritis Rats and Its Regulatory Effect on RANKL and OPG Expression vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4186102
  84. Juglanin Inhibits Osteoclastogenesis in Ovariectomized Mice via the Suppression of NF-κB Signaling Pathways vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.596230
  85. Inhibition of Lipopolysaccharide-Induced Inflammatory Bone Loss by Saikosaponin D is Associated with Regulation of the RANKL/RANK Pathway vol.15, pp.None, 2017, https://doi.org/10.2147/dddt.s334421
  86. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups vol.12, pp.None, 2017, https://doi.org/10.3389/fimmu.2021.778078
  87. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.713254
  88. ZhiJingSan Inhibits Osteoclastogenesis via Regulating RANKL/NF-κB Signaling Pathway and Ameliorates Bone Erosion in Collagen-Induced Mouse Arthritis vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.693777
  89. Water Extract of Mentha arvensis L. Attenuates Estrogen Deficiency-Induced Bone Loss by Inhibiting Osteoclast Differentiation vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.719602
  90. Hydroxy-Safflower Yellow A Alleviates Osteoporosis in Ovariectomized Rat Model by Inhibiting Carbonic Anhydrase 2 Activity vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.734539
  91. Nitazoxanide, an Antiprotozoal Drug, Reduces Bone Loss in Ovariectomized Mice by Inhibition of RANKL-Induced Osteoclastogenesis vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.781640
  92. Inhibitory effects of biochanin A on titanium particle‐induced osteoclast activation and inflammatory bone resorption via NF‐κB and MAPK pathways vol.236, pp.2, 2017, https://doi.org/10.1002/jcp.29948
  93. The functional interplay of transcription factors and cell adhesion molecules in experimental myelodysplasia including hematopoietic stem progenitor compartment vol.476, pp.2, 2017, https://doi.org/10.1007/s11010-020-03920-6
  94. Myricetin: A review of the most recent research vol.134, pp.None, 2021, https://doi.org/10.1016/j.biopha.2020.111017
  95. Increased expression of CXCL2 in ACPA‐positive rheumatoid arthritis and its role in osteoclastogenesis vol.203, pp.2, 2017, https://doi.org/10.1111/cei.13527
  96. Osteoclastogenic Potential of Tissue-Engineered Periosteal Sheet: Effects of Culture Media on the Ability to Recruit Osteoclast Precursors vol.22, pp.4, 2017, https://doi.org/10.3390/ijms22042169
  97. Deletion of the proton receptor OGR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption vol.99, pp.3, 2017, https://doi.org/10.1016/j.kint.2020.10.023
  98. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22062911
  99. Fucoxanthin Suppresses Osteoclastogenesis via Modulation of MAP Kinase and Nrf2 Signaling vol.19, pp.3, 2017, https://doi.org/10.3390/md19030132
  100. Correlation between LncRNA Profiles in the Blood Clot Formed on Nano-Scaled Implant Surfaces and Osseointegration vol.11, pp.3, 2017, https://doi.org/10.3390/nano11030674
  101. SIRT1, a promising regulator of bone homeostasis vol.269, pp.None, 2017, https://doi.org/10.1016/j.lfs.2021.119041
  102. Eleutherococcus sessiliflorus Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL)-Induced Osteoclast Differentiation and Prevents Ovariectomy (OVX)-Induced Bone Loss vol.26, pp.7, 2021, https://doi.org/10.3390/molecules26071886
  103. Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response vol.53, pp.4, 2021, https://doi.org/10.1038/s12276-021-00596-w
  104. Salubrinal Alleviates Collagen-Induced Arthritis through Promoting P65 Degradation in Osteoclastogenesis vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073501
  105. Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures vol.22, pp.10, 2021, https://doi.org/10.3390/ijms22105232
  106. Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression vol.42, pp.5, 2021, https://doi.org/10.1038/s41401-020-0477-4
  107. Zinc Sulfate Stimulates Osteogenic Phenotypes in Periosteum-Derived Cells and Co-Cultures of Periosteum-Derived Cells and THP-1 Cells vol.11, pp.5, 2017, https://doi.org/10.3390/life11050410
  108. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus vol.9, pp.5, 2021, https://doi.org/10.3390/microorganisms9051070
  109. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices vol.125, pp.None, 2017, https://doi.org/10.1016/j.msec.2021.112108
  110. Harmine targets inhibitor of DNA binding‐2 and activator protein‐1 to promote preosteoclast PDGF‐BB production vol.25, pp.12, 2017, https://doi.org/10.1111/jcmm.16562
  111. Paracrine Kynurenic Pathway Activation in the Bone of Young Uremic Rats Can Antagonize Anabolic Effects of PTH on Bone Turnover and Strength through the Disruption of PTH-Dependent Molecular Signaling vol.22, pp.12, 2017, https://doi.org/10.3390/ijms22126563
  112. DNA Hybridization-Based Differential Peptide Display Identified Potential Osteogenic Peptides vol.27, pp.2, 2017, https://doi.org/10.1007/s10989-020-10141-4
  113. Serum Insufficiency Induces RANKL-Independent Osteoclast Formation during Developing Ischemic ONFH vol.9, pp.6, 2017, https://doi.org/10.3390/biomedicines9060685
  114. Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse vol.191, pp.4, 2017, https://doi.org/10.1007/s00360-021-01375-9
  115. Shaping the bone through iron and iron-related proteins vol.58, pp.3, 2021, https://doi.org/10.1053/j.seminhematol.2021.06.002
  116. The role of statins in the differentiation and function of bone cells vol.51, pp.7, 2017, https://doi.org/10.1111/eci.13534
  117. Zoledronic acid modulates osteoclast apoptosis through activation of the NF-κB signaling pathway in ovariectomized rats vol.246, pp.15, 2017, https://doi.org/10.1177/15353702211011052
  118. Deferoxamine Reduces Inflammation and Osteoclastogenesis in Avulsed Teeth vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158225
  119. Synthesis and Biological Evaluation of C-17-Amino-Substituted Pyrazole-Fused Betulinic Acid Derivatives as Novel Agents for Osteoarthritis Treatment vol.64, pp.18, 2017, https://doi.org/10.1021/acs.jmedchem.1c01019
  120. A possible way to prevent the progression of bone lesions in multiple myeloma via Src‐homology‐region‐2‐domain‐containing‐phosphatase‐1 activation vol.122, pp.10, 2017, https://doi.org/10.1002/jcb.29949
  121. Inhibition of NFAM1 suppresses phospho‐SAPK/JNK signaling during osteoclast differentiation and bone resorption vol.122, pp.10, 2017, https://doi.org/10.1002/jcb.30076
  122. Congenital Metabolic Bone Disorders as a Cause of Bone Fragility vol.22, pp.19, 2017, https://doi.org/10.3390/ijms221910281
  123. Targeting Probiotics in Rheumatoid Arthritis vol.13, pp.10, 2017, https://doi.org/10.3390/nu13103376
  124. MiRNAs Expression Profiling in Raw264.7 Macrophages after Nfatc1-Knockdown Elucidates Potential Pathways Involved in Osteoclasts Differentiation vol.10, pp.11, 2017, https://doi.org/10.3390/biology10111080
  125. The Role of Cannabinoids in Bone Metabolism: A New Perspective for Bone Disorders vol.22, pp.22, 2017, https://doi.org/10.3390/ijms222212374
  126. Synergistic Effect of Biphasic Calcium Phosphate and Platelet-Rich Fibrin Attenuate Markers for Inflammation and Osteoclast Differentiation by Suppressing NF-κB/MAPK Signaling Pathway in Chronic vol.26, pp.21, 2017, https://doi.org/10.3390/molecules26216578
  127. Anti-Osteoporotic Effects of n-trans-Hibiscusamide and Its Derivative Alleviate Ovariectomy-Induced Bone Loss in Mice by Regulating RANKL-Induced Signaling vol.26, pp.22, 2017, https://doi.org/10.3390/molecules26226820
  128. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens vol.42, pp.6, 2017, https://doi.org/10.1210/endrev/bnab015
  129. Parathyroid Hormone in the Regulation of Bone Growth and Resorption in Health and Disease vol.76, pp.5, 2021, https://doi.org/10.15690/vramn1440
  130. 12-Deoxyphorbol 13-acetate inhibits RANKL-induced osteoclastogenesis via the attenuation of MAPK signaling and NFATc1 activation vol.101, pp.no.pa, 2021, https://doi.org/10.1016/j.intimp.2021.108177
  131. The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases vol.228, pp.None, 2021, https://doi.org/10.1016/j.pharmthera.2021.107941
  132. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases vol.9, pp.1, 2021, https://doi.org/10.1038/s41413-021-00136-2
  133. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts vol.12, pp.1, 2017, https://doi.org/10.1038/s41467-021-22565-7
  134. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning vol.19, pp.1, 2017, https://doi.org/10.1186/s12964-021-00727-w
  135. The Neuropeptide VIP Limits Human Osteoclastogenesis: Clinical Associations with Bone Metabolism Markers in Patients with Early Arthritis vol.9, pp.12, 2017, https://doi.org/10.3390/biomedicines9121880
  136. LIM Kinases in Osteosarcoma Development vol.10, pp.12, 2017, https://doi.org/10.3390/cells10123542
  137. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis vol.13, pp.12, 2017, https://doi.org/10.3390/nu13124455
  138. FGF19 protects against obesity-induced bone loss by promoting osteogenic differentiation vol.146, pp.None, 2017, https://doi.org/10.1016/j.biopha.2021.112524