DOI QR코드

DOI QR Code

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon (Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chun, Hyun Jin (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Yun, Dae-Jin (Department of Biomedical Science and Engineering, Konkuk University) ;
  • Kim, Min Chul (Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2017.09.15
  • Accepted : 2017.09.30
  • Published : 2017.10.31

Abstract

The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

Keywords

References

  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., and Shinozaki, K. (1997). Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859-1868.
  2. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15, 63-78. https://doi.org/10.1105/tpc.006130
  3. Baek, D., Kim, M.C., Chun, H.J., Kang, S., Park, H.C., Shin, G., Park, J., Shen, M., Hong, H., Kim, W.Y., et al. (2013). Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol. 161, 362-373. https://doi.org/10.1104/pp.112.205922
  4. Baek, D., Chun, H.J., Kang, S., Shin, G., Park, S.J., Hong, H., Kim, C., Kim, D.H., Lee, S.Y., Kim, M.C., et al. (2016). A Role for Arabidopsis miR399f in salt, drought, and ABA signaling. Mol. Cells 39, 111-118. https://doi.org/10.14348/molcells.2016.2188
  5. Banerjee A., and Roychoudhury A. (2015). WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015, 807560.
  6. Bayle, V., Arrighi, J.F., Creff, A., Nespoulous, C., Vialaret, J., Rossignol, M., Gonzalez, E., Paz-Ares, J., and Nussaume, L. (2011). Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23, 1523-1535. https://doi.org/10.1105/tpc.110.081067
  7. Bournier, M., Tissot, N., Mari, S., Boucherez, J., Lacombe, E., Briat, J.F., and Gaymard, F. (2013). Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J. Biol. Chem. 288, 22670-22680. https://doi.org/10.1074/jbc.M113.482281
  8. Briat, J.F., Rouached, H., Tissot, N., Gaymard, F., and Dubos, C. (2015). Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci. 6, 290.
  9. Bustos, R., Castrillo, G., Linhares, F., Puga, M.I., Rubio, V., Perez- Perez, J., Solano, R., Leyva, A., and Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6, e1001102. https://doi.org/10.1371/journal.pgen.1001102
  10. Catala, R., Ouyang, J., Abreu, I.A., Hu, Y., Seo, H., Zhang, X., and Chua, N.H. (2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell. 19, 2952-2966. https://doi.org/10.1105/tpc.106.049981
  11. Chen, Y.F., Li, L.Q., Xu, Q., Kong, Y.H., Wang, H., and Wu, W.H. (2009). The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 21, 3554-3566. https://doi.org/10.1105/tpc.108.064980
  12. Chen, X., Liu, J., Lin, G., Wang, A., Wang, Z., and Lu, G. (2013). Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep. 32, 1589-1599. https://doi.org/10.1007/s00299-013-1469-3
  13. Chen, J., Yang, L., Yan, X., Liu, Y., Wang, R., Fan, T., Ren, Y., Tang, X., Xiao, F., Liu, Y., et al. (2016). Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione- Dependent Pathway in Arabidopsis. Plant Physiol. 171, 707-719. https://doi.org/10.1104/pp.15.01882
  14. Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell. 18, 412-421. https://doi.org/10.1105/tpc.105.038943
  15. Chiou, T.J., and Lin, S.I. (2011). Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 62, 185-206. https://doi.org/10.1146/annurev-arplant-042110-103849
  16. Ciereszko, I., and Kleczkowski, L.A. (2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochim. Biophys. Acta. 1579, 43-49. https://doi.org/10.1016/S0167-4781(02)00502-X
  17. Ciereszko, I., Johansson, H., and Kleczkowski, L.A. (2005). Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. 162, 343-353. https://doi.org/10.1016/j.jplph.2004.08.003
  18. Cui, L.G., Shan, J.X., Shi, M., Gao, J.P., and Lin, H.X. (2014). The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 80, 1108-1117. https://doi.org/10.1111/tpj.12712
  19. Devaiah, B.N., Karthikeyan, A.S., and Raghothama, K.G. (2007a). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143, 1789-1801. https://doi.org/10.1104/pp.106.093971
  20. Devaiah, B.N., Nagarajan, V.K., and Raghothama, K.G. (2007b). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 145, 147-159. https://doi.org/10.1104/pp.107.101691
  21. Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., and Raghothama, K.G. (2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant. 2, 43-58. https://doi.org/10.1093/mp/ssn081
  22. Dong, J., Piñeros, M.A., Li, X., Yang, H., Liu, Y., Murphy, A.S., Kochian, L.V., and Liu, D. (2017). An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots. Mol. Plant. 10, 244-259. https://doi.org/10.1016/j.molp.2016.11.001
  23. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573-581. https://doi.org/10.1016/j.tplants.2010.06.005
  24. Franco-Zorrilla, J.M., González, E., Bustos, R., Linhares, F., Leyva, A., and Paz-Ares, J. (2004). The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285-293. https://doi.org/10.1093/jxb/erh009
  25. Franco-Zorrilla, J.M., Martín, A.C., Leyva, A., and Paz-Ares, J. (2005). Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol. 138, 847-857. https://doi.org/10.1104/pp.105.060517
  26. Gibson, S.I. (2004). Sugar and phytohormone response pathways: navigating a signaling network. J. Exp. Bot. 55, 253-264.
  27. Guo, Y., and Gan, S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol. 156, 1612-1619. https://doi.org/10.1104/pp.111.177022
  28. Guo, B., Jin, Y., Wussler, C., Blancaflor, E.B., Motes, C.M., and Versaw, W.K. (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177, 889- 898. https://doi.org/10.1111/j.1469-8137.2007.02331.x
  29. Hammond, J.P., and White, P.J. (2008). Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J. Exp. Bot. 59, 93-109.
  30. Hillwig, M.S., Lebrasseur, N.D., Green, P.J., and Macintosh, G.C. (2008). Impact of transcriptional, ABA-dependent, and ABAindependent pathways on wounding regulation of RNS1 expression. Mol. Genet. Genomics. 280, 249-261. https://doi.org/10.1007/s00438-008-0360-3
  31. Hoeren, F.U., Dolferus, R., Wu, Y., Peacock, W.J., and Dennis, E.S. (1998). Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics. 149, 479-490.
  32. Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151, 2120-2132. https://doi.org/10.1104/pp.109.147280
  33. Huang, Y., Feng, C.Z., Ye, Q., Wu, W.H., and Chen, Y.F. (2016). Arabidopsis WRKY6 Transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet. 12, e1005833. https://doi.org/10.1371/journal.pgen.1005833
  34. Jain, A., Poling, M.D., Karthikeyan, A.S., Blakeslee, J.J., Peer, W.A., Titapiwatanakun, B., Murphy, A.S., and Raghothama, K.G. (2007). Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol. 144, 232-247. https://doi.org/10.1104/pp.106.092130
  35. Jain, A., Nagarajan, V.K., and Raghothama, K.G. (2012). Transcriptional regulation of phosphate acquisition by higher plants. Cell. Mol. Life Sci. 69, 3207-3224. https://doi.org/10.1007/s00018-012-1090-6
  36. Karthikeyan, A.S., Varadarajan, D.K., Jain, A., Held, M.A., Carpita, N.C., and Raghothama, K.G. (2007). Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225, 907-918. https://doi.org/10.1007/s00425-006-0408-8
  37. Khan, G.A., Bouraine, S., Wege, S., Li, Y., de Carbonnel, M., Berthomieu, P., Poirier, Y., and Rouached, H. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homolog PHO1;H3 in Arabidopsis. J. Exp. Bot. 65, 871-884. https://doi.org/10.1093/jxb/ert444
  38. Klecker, M., Gasch, P., Peisker, H., Dörmann, P., Schlicke, H., Grimm, B., and Mustroph, A. (2014). A shoot-specific hypoxic response of arabidopsis sheds light on the role of the phosphate-responsive transcription factor PHOSPHATE STARVATION RESPONSE1. Plant Physiol. 165, 774-790. https://doi.org/10.1104/pp.114.237990
  39. Knappe, S., FlUgge, U.I., and Fischer, K. (2003). Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol. 131, 1178-1190. https://doi.org/10.1104/pp.016519
  40. Lei, M., Liu, Y., Zhang, B., Zhao, Y., Wang, X., Zhou, Y., Raghothama, K.G., and Liu, D. (2011a). Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol. 156, 1116-1130. https://doi.org/10.1104/pp.110.171736
  41. Lei, M., Zhu, C., Liu, Y., Karthikeyan, A.S., Bressan, R.A., Raghothama, K.G., and Liu, D. (2011b). Ethylene signaling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol. 189, 1084-1095. https://doi.org/10.1111/j.1469-8137.2010.03555.x
  42. Lejay, L., Wirth, J., Pervent, M., Cross, J.M., Tillard, P., and Gojon, A. (2008). Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol. 146, 2036-2053. https://doi.org/10.1104/pp.107.114710
  43. Liu, X.M., Nguyen, X.C., Kim, K.E., Han, H.J., Yoo, J., Lee, K., Kim, M.C., Yun, D.J., and Chung, W.S. (2013). Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem. Biophys. Res. Commun. 430, 1054-1059. https://doi.org/10.1016/j.bbrc.2012.12.039
  44. Liu, J., Wang, F., Yu, G., Zhang, X., Jia, C., Qin, J., and Pan, H. (2015). Functional analysis of the maize C-Repeat/DRE Motif-Binding transcription factor CBF3 promoter in response to abiotic stress. Int. J. Mol. Sci. 16, 12131-12146. https://doi.org/10.3390/ijms160612131
  45. Liu, T.Y., Huang, T.K., Yang, S.Y., Hong, Y.T., Huang, S.M., Wang, F.N., Chiang, S.F., Tsai, S.Y., Lu, W.C., and Chiou, T.J. (2016). Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7, 11095. https://doi.org/10.1038/ncomms11095
  46. Ma, Z., Baskin, T.I., Brown, K.M., and Lynch, J.P. (2003). Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131, 1381-1390. https://doi.org/10.1104/pp.012161
  47. Meister, R.J., Williams, L.A., Monfared, M.M., Gallagher, T.L., Kraft, E.A., Nelson, C.G., and Gasser, C.S. (2004). Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 37, 426-438. https://doi.org/10.1046/j.1365-313X.2003.01971.x
  48. Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A.S., Raghothama, K.G., Baek, D., Koo, Y.D., Jin, J.B., Bressan, R.A., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA 102, 7760-7765. https://doi.org/10.1073/pnas.0500778102
  49. Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1- mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403-1414. https://doi.org/10.1105/tpc.106.048397
  50. Miura, K., Lee, J., Jin, J.B., Yoo, C.Y., Miura, T., and Hasegawa, P.M. (2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 106, 5418-5423. https://doi.org/10.1073/pnas.0811088106
  51. Miura, K., Lee, J., Miura, T., and Hasegawa, P.M. (2010). SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol. 51, 103-113. https://doi.org/10.1093/pcp/pcp171
  52. Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J.B., Yoo, C.Y., Miura, T., Sato, A., Bohnert, H.J., and Hasegawa, P.M. (2011a). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol. 155, 1000-1012. https://doi.org/10.1104/pp.110.165191
  53. Miura, K., Sato, A., Ohta, M., and Furukawa, J. (2011b). Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2. Planta 234, 1191-1199. https://doi.org/10.1007/s00425-011-1476-y
  54. Muller, R., Nilsson, L., Nielsen, L.K., and Nielsen, T.H. (2005). Interaction between phosphate starvation signaling and hexokinaseindependent sugar sensing in Arabidopsis leaves. Physiol. Plant 124, 81-90. https://doi.org/10.1111/j.1399-3054.2005.00496.x
  55. Nakashima, K., and Yamaguchi-Shinozaki, K. (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum. 126, 62-71. https://doi.org/10.1111/j.1399-3054.2005.00592.x
  56. Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88-95. https://doi.org/10.1104/pp.108.129791
  57. Nilsson, L., Müller, R., and Nielsen, T.H. (2007). Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ. 30, 1499-1512. https://doi.org/10.1111/j.1365-3040.2007.01734.x
  58. Pacak, A., Barciszewska-Pacak, M., Swida-Barteczka, A., Kruszka, K., Sega, P., Milanowska, K., Jakobsen, I., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2016). Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. Front. Plant Sci. 7, 926.
  59. Pant, B.D., Musialak-Lange, M., Nuc, P., May, P., Buhtz, A., Kehr, J., Walther, D., and Scheible, W.R. (2009). Identification of nutrientresponsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 150, 1541-1555. https://doi.org/10.1104/pp.109.139139
  60. Phukan, U.J., Jeena, G.S., and Shukla, R.K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Front. Plant Sci. 7, 760.
  61. Poirier, Y., and Bucher, M. (2002). Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book. 1, e0024.
  62. Raghothama, K.G. (1999). Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-693. https://doi.org/10.1146/annurev.arplant.50.1.665
  63. Raghothama, K.G. (2000). Phosphate transport and signaling. Curr. Opin. Plant Biol. 3, 182-187. https://doi.org/10.1016/S1369-5266(00)00062-5
  64. Rausch, C., and Bucher, M. (2002). Molecular mechanisms of phosphate transport in plants. Planta 216, 23-37. https://doi.org/10.1007/s00425-002-0921-3
  65. Ribot, C., Wang, Y., and Poirier, Y. (2008). Expression analyzes of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227, 1025-1036. https://doi.org/10.1007/s00425-007-0677-x
  66. Robatzek, S., and Somssich, I.E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16, 1139-1149. https://doi.org/10.1101/gad.222702
  67. Rouached, H., Arpat, A.B., and Poirier, Y. (2010). Regulation of phosphate starvation responses in plants: signaling players and crosstalks. Mol. Plant 3, 288-299. https://doi.org/10.1093/mp/ssp120
  68. Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A., and Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15, 2122-2133. https://doi.org/10.1101/gad.204401
  69. Rubio, V., Bustos, R., Irigoyen, M.L., Cardona-Lopez, X., Rojas-Triana, M., and Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant Mol. Biol. 69, 361-373. https://doi.org/10.1007/s11103-008-9380-y
  70. Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci. 15, 247-258. https://doi.org/10.1016/j.tplants.2010.02.006
  71. Sakamoto, H., Araki, T., Meshi, T., and Iwabuchi, M. (2000). Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zincfinger protein gene family under water stress. Gene 248, 23-32. https://doi.org/10.1016/S0378-1119(00)00133-5
  72. Schmiesing, A., Emonet, A., Gouhier-Darimont, C., and Reymond, P. (2016). Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to Pieris Brassicae egg extract. Plant Physiol. 170, 2432-2443. https://doi.org/10.1104/pp.16.00031
  73. Shukla, T., Kumar, S., Khare, R., Tripathi, R.D., and Trivedi, P.K. (2015). Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front. Plant Sci. 6, 898.
  74. Singh, A., Kumar, P., Gautam, V., Rengasamy, B., Adhikari, B., Udayakumar, M., and Sarkar, A.K. (2016). Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci. Rep. 6, 39266. https://doi.org/10.1038/srep39266
  75. Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., and Bäurle, I. (2014). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell. 26, 1792-1807. https://doi.org/10.1105/tpc.114.123851
  76. Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., and Chen, Y.F. (2015). WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol. 167, 1579-1591. https://doi.org/10.1104/pp.114.253799
  77. Sun, L., Song, L., Zhang, Y., Zheng, Z., and Liu, D. (2016). Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol. 170, 499-514. https://doi.org/10.1104/pp.15.01336
  78. Trull, M.C., Guiltinan, M.J., Lynch, J.P., and Deikman, J. (1997). The responses of wild-type and ABA mutant Arabidopsis thaiiana plants to phosphorus starvation. Plant Cell Environ. 20, 85-92. https://doi.org/10.1046/j.1365-3040.1997.d01-4.x
  79. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195-211.
  80. Wang, X., Yi, K., Tao, Y., Wang, F., Wu, Z., Jiang, D., Chen, X., Zhu, L., and Wu, P. (2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant Cell Environ. 29, 1924-1935. https://doi.org/10.1111/j.1365-3040.2006.01568.x
  81. Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., and Chen, Y.F. (2014). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164, 2020-2029. https://doi.org/10.1104/pp.113.235077
  82. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94.
  83. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et al. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 280, 3697-3706. https://doi.org/10.1074/jbc.M408237200
  84. Yuan, H., and Liu, D. (2008). Signaling components involved in plant responses to phosphate starvation. J. Integr. Plant Biol. 50, 849-859. https://doi.org/10.1111/j.1744-7909.2008.00709.x

Cited by

  1. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19102924
  2. Molecular mechanisms underlying stress response and adaptation vol.9, pp.2, 2018, https://doi.org/10.1111/1759-7714.12579
  3. Structure-Function Analysis Reveals Amino Acid Residues of Arabidopsis Phosphate Transporter AtPHT1;1 Crucial for Its Activity vol.10, pp.None, 2019, https://doi.org/10.3389/fpls.2019.01158
  4. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus vol.14, pp.7, 2017, https://doi.org/10.1371/journal.pone.0220374
  5. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.565339
  6. Hierarchical Canonical Correlation Analysis Reveals Phenotype, Genotype, and Geoclimate Associations in Plants vol.2020, pp.None, 2020, https://doi.org/10.34133/2020/1969142
  7. Phosphate excess increases susceptibility to pathogen infection in rice vol.21, pp.4, 2017, https://doi.org/10.1111/mpp.12916
  8. New insights into interactions of roses and pathogenic fungi and crosstalk potential of various stress signalling pathways vol.1283, pp.None, 2017, https://doi.org/10.17660/actahortic.2020.1283.13
  9. Effects of Phosphate Shortage on Root Growth and Hormone Content of Barley Depend on Capacity of the Roots to Accumulate ABA vol.9, pp.12, 2017, https://doi.org/10.3390/plants9121722
  10. Interactive Effects of Mycorrhizae, Soil Phosphorus, and Light on Growth and Induction and Priming of Defense in Plantago lanceolata vol.12, pp.None, 2017, https://doi.org/10.3389/fpls.2021.647372
  11. Overview of miRNA biogenesis and applications in plants vol.76, pp.8, 2021, https://doi.org/10.1007/s11756-021-00763-4
  12. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis vol.118, pp.33, 2017, https://doi.org/10.1073/pnas.2107558118