• Title/Summary/Keyword: cis-acting regulatory element

Search Result 10, Processing Time 0.032 seconds

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

The Existence of a Putative Regulatory Element in 3'-Untranslated Region of Proto-oncogene HOX11's mRNA

  • Li, Yue;Jiang, Zhao-Zhao;Chen, Hai-Xu;Leung, Wai-Keung;Sung, Joseph J.Y.;Ma, Wei-Jun
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.500-506
    • /
    • 2005
  • HOX11 encodes a homeodomain-containing transcription factor which directs the development of the spleen during embryogenesis. While HOX11 expression is normally silenced through an unknown mechanism in all tissues by adulthood, the deregulation of HOX11 expression is associated with leukemia, such as T-cell acute lymphoblastic leukemia. The elucidation of regulatory elements contributing to the molecular mechanism underlying the regulation of HOX11 gene expression is of great importance. Previous reports of HOX11 regulatory elements mainly focused on the 5'-flanking region of HOX11 on the chromosome related to transcriptional control. To expand the search of putative cis-elements involved in HOX11 regulation at the post-transcriptional level, we analyzed HOX11 mRNA 3'-untranslated region (3'UTR) and found an AU-rich region. To characterize this AU-rich region, in vitro analysis of HOX11 mRNA 3'UTR was performed with human RNA-binding protein HuR, which interacts with AU-rich element (ARE) existing in the 3'UTR of many growth factors' and cytokines' mRNAs. Our results showed that the HOX11 mRNA 3'UTR can specifically bind with human HuR protein in vitro. This specific binding could be competed effectively by typical ARE containing RNA. After the deletion of the AU-rich region present in the HOX11 mRNA 3'UTR, the interaction of HOX11 mRNA 3'UTR with HuR protein was abolished. These findings suggest that HOX11 mRNA 3'UTR contains cis-acting element which shares similarity in the action pattern with RE-HuR interactions and may involve in the post-transcriptional regulation of the HOX11 gene.

An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism

  • Lee, Jong-Min;Johnson, Jeffrey A.
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • The antioxidant responsive element (ARE) is a cis-acting regulatory element of genes encoding phase II detoxification enzymes and antioxidant proteins, such as NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate-cysteine ligase. Interestingly, it has been reported that Nrf2 (NF-E2-related factor 2) regulates a wide array of ARE-driven genes in various cell types. Nrf2 is a basic leucine zipper transcription factor, which was originally identified as a binding protein of locus control region of ss-globin gene. The DNA binding sequence of Nrf2 and ARE sequence are very similar, and many studies demonstrated that Nrf2 binds to the ARE sites leading to up-regulation of downstream genes. The function of Nrf2 and its downstream target genes suggests that the Nrf2-ARE pathway is important in the cellular antioxidant defense system. In support of this, many studies showed a critical role of Nrf2 in cellular protection and anti-carcinogenicity, implying that the Nrf2-ARE pathway may serve as a therapeutic target for neurodegenerative diseases and cancers, in which oxidative stress is closely implicated.

DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene (폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites)

  • Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.879-886
    • /
    • 2000
  • Background : Thyroid Transcription Factor-1(TTF-1) acts as a tissue specific transcription factor in the regulation of lung specific gene expression and as morphogenic protein during lung organogenesis. Currently, there is very little information on the cis-acting sequences and transcription factors that direct the TTF-1 gene expression. DNAse 1 hypersensitive (DH) sites represent a marker for active or potentially active chromatin and are likely to be especially important in gene regulation, being associated with many DNA sequences that regulate gene expression. It is clear that DH regions correlate with genetic regulatory loci and binding for sequence-specific DNA-binding proteins. Methods : We have used DH site assays to identify putative distal regulatory elements in H441 lung adenocarcinoma cells, which express the TTF-1 gene and HeLa cells. Results : There are four DH sites 5' of the TTF-1 gene. These sites are located at base pair approximately +150, -450, -800, and -1500 from the start of transcription. Conclusion : These data suggest that there may be at least one intragenic site and regulatory region 5' prime to the promotor region.

  • PDF

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon;Chun, Hyun Jin;Yun, Dae-Jin;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.697-705
    • /
    • 2017
  • The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

Promoter Analysis of the Cell Surface-abundant and Hypoviral-regulated Cryparin Gene from Cryphonectria parasitica

  • Kim, Myoung-Ju;Kwon, Bo-Ra;Park, Seung-Moon;Chung, Hea-Jong;Yang, Moon-Sik;Churchill, Alice C.L.;Van Alfen, Neal K.;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.496-502
    • /
    • 2008
  • Cryparin, encoded as a single copy gene (Crp) of the chestnut blight fungus Cryphonectria parasitica, is the most abundant protein produced by this fungus. However, its accumulation is decreased remarkably in C. parastica strains containing the double-stranded (ds) RNA virus Cryphonectria hypovirus 1. To characterize the transcriptional regulatory element(s) for strong expression and viral regulation, promoter analysis was conducted. Serial deletion of the Crp promoter region resulted in a step-wise decrease in promoter activity, indicating a localized distribution of genetic elements in the cryparin promoter. Promoter analysis indicated two positive and a repressive cis-acting elements. Among them, the promoter region between nt -1,282 and -907 appeared to be necessary for hypoviral-mediated down-regulation. An electrophoretic mobility shift assay (EMSA) on the corresponding promoter region (-1,282/-907) indicated two regions at (-1,257/-1,158) and (-1,107/-1,008) with the characteristic AGGAGGA-N42-GAGAGGA and its inverted repeat TCCTCTC-N54-TCCTCCT, respectively, appeared to be specific binding sites for cellular factors.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

Regulatory Mechanism in Tissue-specific Expression of Insulin-like Growth Factor-I Gene (Insulin-like growth factor-I 유전자의 조직 특이적 발현에 대한 조절기전)

  • 안미라
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.329-334
    • /
    • 2003
  • The present study was aimed at investigating the regulatory mechanism in tissue-specific expression of insulin-like growth factor-I (IGF-I) gene. The expression of IGF-I gene was determined by a solution hybridization/RNase protection assay using total RNA prepared from rat liver or brain of various ages. The levels of IGF-I transcripts were increased in liver gradually after birth, but decreased in brain. By using an oligonucleotide (FRE) corresponding to the C/EBP binding site of the rat IGF-I exon 1, multiple forms of C/EBP${\alpha}$ and C/EBP${\beta}$ proteins, which have DNA-binding activity, were detected in the rat liver or brain. Western immunoblot and southwestern analyses show that p42$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\alpha}$/, p35$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\beta}$/, and p35$\^$C/EBP${\beta}$ form specific complexes with the IGF-I exon 1 oligonucleotide in liver nuclear extract and that p42$\^$C/EBP${\alpha}$/ and p38$\^$C/EBP${\beta}$/ form complexes in brain. These data suggest that the formation of FRE-C/EBP isoform complexes may play important roles in the tissue-specific regulation of IGF-I gene expression.

Transcriptional Activation and Repression of Cell Cycle Regulatory Molecules by Trichostatin A (Trichostatin A 처리에 의하 세포주기 조절인자들의 전사활성화 및 불활성화)

  • Baek Jong-Soo;Lee Hee-Kyung;Cho Young-Su;Kim Sung-Young;Park Kwan-Kyu;Chang Young-Chae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.994-1004
    • /
    • 2005
  • The dihydrofolate reductase (dhfr) promoter contains cis-acting element for the transcription factors Spl and E2F. Transcription of dhfr gene shows maximal activity during the Gl/S phase of cell cycle. The member of the Spl transcriptional factor family can act as both negative and positive regulators of gene expression. There was a report that Spl-Rb and E2F4-pl30 complexes cooperate to establish stable repression of dhfr gene expression in CHOC400 cells. Here, we examined the role of HDAC in dhfr, cyclin E, and cyclin A gene regulation using the histone deacetylation inhibitor, trichostatin A (TSA) in U2OS and C33A cells, a Rb-positive human osteosarcoma cell line, and a Rb-negative cervical carcinoma cell line, respectively. When the dhfr promoter constructs were applied in U2OS cells, TSA markedly stimulated over 14-fold of dhfr promoter activity through dhfr-Spl sites by the deletion of an E2F element. In contrast, the deletion of dhfr-Spl binding sites completely abolished promoter stimulation by TSA. The dhfr promoter activity including dhfr-Spl sites increased only 2-fold in C33A cells. Promoter activity containing only dhfr-E2F site did not have much effect by the treatment of TSA in both U2OS and C33A cells. On the other hand, treatment with TSA induced significantly mRNA expression of dhfr and cyclin E, whereas levels of cyclin A decreased in U2OS cells, but had no effect in C33A cells. These results indicate that TSA have contradictory effect, activation of dhfr and cyclin E genes on Gl phase, and down-regulation of cyclin A on G2 phase through transcriptional regulation in U2OS cells.