References
- Massague J (2008) TGFbeta in Cancer. Cell 134, 215-230 https://doi.org/10.1016/j.cell.2008.07.001
- Ault KT, Dirksen ML and Jamrich M (1996) A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci U S A 93, 6415-6420 https://doi.org/10.1073/pnas.93.13.6415
- Pillemer G, Yelin R, Epstein M et al (1998) The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech Dev 74, 133-143 https://doi.org/10.1016/S0925-4773(98)00075-6
- Ault KT, Xu RH, Kung HF and Jamrich M (1997) The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos. Dev Biol 192, 162-171 https://doi.org/10.1006/dbio.1997.8737
- Hwang YS, Lee HS, Roh DH et al (2003) Active repression of organizer genes by C-terminal domain of PV.1. Biochem Biophys Res Commun 308, 79-86 https://doi.org/10.1016/S0006-291X(03)01321-4
- Hwang YS, Seo JJ, Cha SW et al (2002) Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem Biophys Res Commun 292, 1081-1086 https://doi.org/10.1006/bbrc.2002.6740
- Kumar S, Umair Z, Yoon J et al (2018) Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. Sci Rep 8, 11391 https://doi.org/10.1038/s41598-018-29740-9
- Lee HS, Lee SY, Lee H et al (2011) Direct response elements of BMP within the PV.1A promoter are essential for its transcriptional regulation during early Xenopus development. PLoS One 6, e22621 https://doi.org/10.1371/journal.pone.0022621
- Yoon J, Kim JH, Lee SY et al (2014) PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos. BMB Rep 47, 673-678 https://doi.org/10.5483/BMBRep.2014.47.12.290
- Charney RM, Paraiso KD, Blitz IL and Cho KWY (2017) A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 66, 12-24 https://doi.org/10.1016/j.semcdb.2017.03.003
- Danilov V, Blum M, Schweickert A, Campione M and Steinbeisser H (1998) Negative autoregulation of the organizer-specific homeobox gene goosecoid. J Biol Chem 273, 627-635 https://doi.org/10.1074/jbc.273.1.627
- Keenan ID, Sharrard RM and Isaacs HV (2006) FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 299, 478-488 https://doi.org/10.1016/j.ydbio.2006.08.040
- Ryu JH, Nam KB, Oh CT et al (2004) The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol Cell Biol 24, 172-185 https://doi.org/10.1128/MCB.24.1.172-185.2004
- Hwang MS, Kim YS, Choi NH et al (2002) The caudal homeodomain protein activates Drosophila E2F gene expression. Nucleic Acids Res 30, 5029-5035 https://doi.org/10.1093/nar/gkf640
- Suh E, Chen L, Taylor J and Traber PG (1994) A homeodomain protein related to caudal regulates intestinespecific gene transcription. Mol Cell Biol 14, 7340-7351 https://doi.org/10.1128/MCB.14.11.7340
- Friedle H and Knochel W (2002) Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J Biol Chem 277, 23872-23881 https://doi.org/10.1074/jbc.M201831200
- Onichtchouk D, Gawantka V, Dosch R et al (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development 122, 3045-3053 https://doi.org/10.1242/dev.122.10.3045
- Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW and Sokol SY (2010) Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell 19, 521-532 https://doi.org/10.1016/j.devcel.2010.09.005
- Sander V, Reversade B and De Robertis EM (2007) The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 26, 2955-2965 https://doi.org/10.1038/sj.emboj.7601705
- Park DS, Kim K, Jang M and Choi SC (2018) Role of dipeptidyl peptidase-4 as a potentiator of activin/nodal signaling pathway. BMB Rep 51, 636-641 https://doi.org/10.5483/BMBRep.2018.51.12.210
- Blythe SA, Reid CD, Kessler DS and Klein PS (2009) Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev Dyn 238, 1422-1432 https://doi.org/10.1002/dvdy.21931