DOI QR코드

DOI QR Code

Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α

  • Kim, Jin-Ik (Department of Biochemistry & Health Sciences, Changwon National University) ;
  • Kaufman, Randal J. (Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute) ;
  • Back, Sung Hoon (School of Biological Sciences, University of Ulsan) ;
  • Moon, Ja-Young (Department of Biochemistry & Health Sciences, Changwon National University)
  • Received : 2019.05.22
  • Accepted : 2019.09.30
  • Published : 2019.11.30

Abstract

When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of $ATF6{\alpha}$ by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human $ATF6{\alpha}$ N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-$hATF6{\alpha}$ deletion variant was cleaved to liberate active transcription activator encompassing GV-$hATF6{\alpha}$ fragment which could translocate into the nucleus. The translocated GV-$hATF6{\alpha}$ fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-$hATF6{\alpha}$(333) represents an innovative tool to investigate regulated intramembrane proteolysis of $ATF6{\alpha}$. It can substitute active pATF6(N) binding motif-based reporter cell lines.

Keywords

References

  1. Back, S.H. and Kaufman, R.J. (2012). Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767-793. https://doi.org/10.1146/annurev-biochem-072909-095555
  2. Back, S.H., Lee, K., Vink, E., and Kaufman, R.J. (2006). Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J. Biol. Chem. 281, 18691-18706. https://doi.org/10.1074/jbc.M602030200
  3. Bailey, D. and O'Hare, P. (2007). Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 9, 2305-2321. https://doi.org/10.1089/ars.2007.1796
  4. Bommiasamy, H., Back, S.H., Fagone, P., Lee, K., Meshinchi, S., Vink, E., Sriburi, R., Frank, M., Jackowski, S., Kaufman, R.J., et al. (2009). ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626-1636. https://doi.org/10.1242/jcs.045625
  5. Chen, X., Shen, J., and Prywes, R. (2002). The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 277, 13045-13052. https://doi.org/10.1074/jbc.M110636200
  6. Gallagher, C.M., Garri, C., Cain, E.L., Ang, K.K., Wilson, C.G., Chen, S., Hearn, B.R., Jaishankar, P., Aranda-Diaz, A., Arkin, M.R., et al. (2016). Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6alpha branch. Elife 5, e11878. https://doi.org/10.7554/eLife.11878
  7. Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099-1108. https://doi.org/10.1016/S1097-2765(00)00108-8
  8. Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787-3799. https://doi.org/10.1091/mbc.10.11.3787
  9. Hetz, C. and Glimcher, L.H. (2009). Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol. Cell 35, 551-561. https://doi.org/10.1016/j.molcel.2009.08.021
  10. Hetz, C., Martinon, F., Rodriguez, D., and Glimcher, L.H. (2011). The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219-1243. https://doi.org/10.1152/physrev.00001.2011
  11. Iwawaki, T., Akai, R., Kohno, K., and Miura, M. (2004). A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98-102. https://doi.org/10.1038/nm970
  12. Iwawaki, T., Akai, R., Toyoshima, T., Takeda, N., Ishikawa, T.O., and Yamamura, K.I. (2017). Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo. Sci. Rep. 7, 46230. https://doi.org/10.1038/srep46230
  13. Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448-7459. https://doi.org/10.1128/MCB.23.21.7448-7459.2003
  14. Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K., and Kaufman, R.J. (2002). IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452-466. https://doi.org/10.1101/gad.964702
  15. Nadanaka, S., Okada, T., Yoshida, H., and Mori, K. (2007). Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell Biol. 27, 1027-1043. https://doi.org/10.1128/MCB.00408-06
  16. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. EMBO Rep. 17, 1374-1395. https://doi.org/10.15252/embr.201642195
  17. Proud, C.G. (2005). eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3-12. https://doi.org/10.1016/j.semcdb.2004.11.004
  18. Ron, D. and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529. https://doi.org/10.1038/nrm2199
  19. Rutkowski, D.T. and Kaufman, R.J. (2007). That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 32, 469-476. https://doi.org/10.1016/j.tibs.2007.09.003
  20. Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99-111. https://doi.org/10.1016/S1534-5807(02)00203-4
  21. Shen, J. and Prywes, R. (2004). Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J. Biol. Chem. 279, 43046-43051. https://doi.org/10.1074/jbc.M408466200
  22. Spiotto, M.T., Banh, A., Papandreou, I., Cao, H., Galvez, M.G., Gurtner, G.C., Denko, N.C., Le, Q.T., and Koong, A.C. (2010). Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res. 70, 78-88. https://doi.org/10.1158/0008-5472.CAN-09-2747
  23. Wang, M. and Kaufman, R.J. (2016). Protein misfolding in the ER as a conduit to human disease. Nature 529, 326-335. https://doi.org/10.1038/nature17041
  24. Wang, Y., Shen, J., Arenzana, N., Tirasophon, W., Kaufman, R.J., and Prywes, R. (2000). Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27013-27020. https://doi.org/10.1016/S0021-9258(19)61473-0
  25. Wek, R.C. and Cavener, D.R. (2007). Translational control and the unfolded protein response. Antioxid. Redox Signal. 9, 2357-2371. https://doi.org/10.1089/ars.2007.1764
  26. Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11. https://doi.org/10.1042/BST0340007
  27. Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., Harada, A., and Mori, K. (2007). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev. Cell 13, 365-376. https://doi.org/10.1016/j.devcel.2007.07.018
  28. Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355-1364. https://doi.org/10.1016/S1097-2765(00)00133-7
  29. Yoshida, H. (2007). ER stress and diseases. FEBS J. 274, 630-658. https://doi.org/10.1111/j.1742-4658.2007.05639.x
  30. Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741-33749. https://doi.org/10.1074/jbc.273.50.33741
  31. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell Biol. 20, 6755-6767. https://doi.org/10.1128/MCB.20.18.6755-6767.2000
  32. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2001). Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell Biol. 21, 1239-1248. https://doi.org/10.1128/MCB.21.4.1239-1248.2001
  33. Zhu, C., Johansen, F.E., and Prywes, R. (1997). Interaction of ATF6 and serum response factor. Mol. Cell Biol. 17, 4957-4966. https://doi.org/10.1128/MCB.17.9.4957

Cited by

  1. T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis vol.44, pp.1, 2021, https://doi.org/10.14348/molcells.2020.0143