• Title/Summary/Keyword: time-delayed control

Search Result 501, Processing Time 0.026 seconds

A Stability Region of Time-varying Perturbations by Using Generalized Eigenvalue Problem (일반화된 고유치 문제를 이용한 시변 섭동의 안정 범위)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.901-906
    • /
    • 2005
  • The stability robustness problem of continuous linear systems with nominal and delayed time-varying perturbations is considered. In the previous results, the entire bound was derived only for the overall perturbations without separation of the perturbations. In this paper, the sufficient condition for stability of the system with two perturbations, which are nominal and delayed, is expressed as linear matrix inequalities(LMIs). The corresponding stability bounds fer those two perturbations are determined by LMI(Linear Matrix Inequality)-based generalized eigenvalue problem. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed.

Time-Delayed Feedback Controller Design for a Electro-Hydraulic Servo System (전기-유압 서어보 시스템의 시간-지연 제어기 설계)

  • Kim, Soo-Hong;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.342-345
    • /
    • 1989
  • In this paper, a controller design for a electro-hydraulic servo system is presented. When state variables of the system are not directly measurable for feedback control, it is very difficult to satisfy the given requirements for the system output control. The proposed design method is based on the feeding back of the output variable and it's time delayed values.

  • PDF

Fuzzy H$\infty$ Filtering for Nonlinear Systems with Time-Varying Delayed States

  • Lee, Kap-Rai;Lee, Jang-Sik;Oh, Do-Chang;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 1999
  • This paper presents a fuzzy H$\infty$ filtering problem for a class of uncertain nonlinear systems with time-varying delayed states and unknown inital state on the basis of Takagi-Sugeno(T-S) fuzzy model. The nonlinear systems are represented by T-S fuzzy models, and the fuzzy control systems utilize the concept of the so-called parallel distributed compensation. Using a single quadraic Lyapunov function, the stability and L2 gain performance from the noise signals to the estimation error are discussed. Sufficient conditions for the existence of fuzzy H$\infty$ filters are given in terms of linear matrix inequalities (LMIs). The filtering gains can also be directly obtained from the solutions of LMIs.

  • PDF

[ $H_{\infty}$ ] Control of Time-Delayed Linear Systems with Limited Actuator Capacities (제한된 구동기 용량을 갖는 시간지연 선형시스템의 $H_{\infty}$ 제어)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1648-1654
    • /
    • 2007
  • In this paper, we consider the design of $H_\infty$ high-gain state feedback control for time-delayed linear systems with limited actuator capacities. The high-gain control means that the control permits the predetermined degree of saturation. Based on new Lyapunov-Krasovskii functional, we derive a result in the form of matrix inequalities. The matrix inequalities are consisted of LMIs those confirm the positive definiteness of Lyapunov- Krasovskii functional, satisfaction of predetermined degree of saturation, reachable set and $L_2$ gain constraint. The result is dependent on the bound of time-delay and its rate, predetermined degree of saturation, actuator capacity, and the allowed size of disturbances. Finally, we give a numerical example to show the effectiveness and usefulness of our result.

Design of $H_{\infty}$ Control of Time-Delayed Linear Systems Using Model Transformation (모델변환을 이용한 시간지연 선형시스템의 지연종속 $H_{\infty}$ 제어)

  • Ma, Sam-Sun;Lee, Hee-Song;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.409-416
    • /
    • 2001
  • This paper deals with the design of delay-dependent $H_{\infty}$ control for time-delayed linear systems. We propose the two different model transformations to handle efficiently the time delay and derive conditions linear matrix inequalities (LMI's) of which are dependent on the size of time-delay and its time-derivative. The $H_{\infty}$ controller is obtained by checking the feasibility of these LMI's. Finally, we show the usefulness and applicability of our results by an example.

  • PDF

[ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

Time-Discretization of Nonlinear Systems with Delayed Multi-Input Using Taylor Series

  • Park, Ji-Hyang;Chong, Kil-To;Nikolaos Kazantzis;Alexander G. Parlos
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1107-1120
    • /
    • 2004
  • This study proposes a new scheme for the sampled-data representation of nonlinear systems with time-delayed multi-input. The proposed scheme is based on the Taylor-series expansion and zero-order hold assumption. The mathematical structure of a new discretization scheme is explored. On the basis of this structure, the sampled-data representation of nonlinear systems including time-delay is derived. The new scheme is applied to nonlinear systems with two inputs and then the delayed multi-input general equation is derived. The resulting time-discretization provides a finite-dimensional representation of nonlinear control systems with time-delay enabling existing controller design techniques to be applied to them. In order to evaluate the tracking performance of the proposed scheme, an algorithm is tested for some of the examples including maneuvering of an automobile and a 2-DOF mechanical system.

Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and Controller Design

  • Park, Chang-Woo;Kang, Hyung-Jin;Kim, Jung-Hwan;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.274-284
    • /
    • 2000
  • In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the qualitative effects of the quantizers in digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-back controller whose output is delayed with unit sampling period and period and predicted. the analysis and the design problem considering time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the quantized fuzzy system. Our results prove that when quantization os taken into account, one only has convergence to some small neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system and design a DFC which guarantees the stability of the control system in the presence of time-delay.

  • PDF

Guaranteed Cost Control for Uncertain Time-Delay Systems with nonlinear Perturbations via Delayed Feedback (지연귀환을 통한 비선형 섭동이 존재하는 불확실 시간지연 시스템의 성능보장 제어)

  • Park, Ju-Hyun;Kwon, Oh-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2007
  • In this paper, we propose a delayed feedback guaranteed cost controller design method for linear time-delay systems with norm-bounded parameter uncertainties and nonlinear perturbations. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, an LMI optimization problem is formulated to design a controller such that the closed-loop cost function value is not more than a specified upper bound for all admissible system uncertainties and nonlinear perturbations. Numerical example show the effectiveness of the proposed method.