• 제목/요약/키워드: symmetric bilinear forms

검색결과 7건 처리시간 0.02초

Extremal Problems for 𝓛s(22h(w))

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.223-232
    • /
    • 2017
  • We classify the extreme and exposed symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on ${\mathbb{R}}^2$ with hexagonal norms. We also show that every extreme symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on ${\mathbb{R}}^2$ with hexagonal norms is exposed.

The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.781-791
    • /
    • 2016
  • Let $d_*(1,w)^2 ={\mathbb{R}}^2$ with the octagonal norm of weight w. It is the two dimensional real predual of Lorentz sequence space. In this paper we classify the smooth points of the unit ball of the space of symmetric bilinear forms on $d_*(1,w)^2$. We also show that the unit sphere of the space of symmetric bilinear forms on $d_*(1,w)^2$ is the disjoint union of the sets of smooth points, extreme points and the set A as follows: $$S_{{\mathcal{L}}_s(^2d_*(1,w)^2)}=smB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}extB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}A$$, where the set A consists of $ax_1x_2+by_1y_2+c(x_1y_2+x_2y_1)$ with (a = b = 0, $c={\pm}{\frac{1}{1+w^2}}$), ($a{\neq}b$, $ab{\geq}0$, c = 0), (a = b, 0 < ac, 0 < ${\mid}c{\mid}$ < ${\mid}a{\mid}$), ($a{\neq}{\mid}c{\mid}$, a = -b, 0 < ac, 0 < ${\mid}c{\mid}$), ($a={\frac{1-w}{1+w}}$, b = 0, $c={\frac{1}{1+w}}$), ($a={\frac{1+w+w(w^2-3)c}{1+w^2}}$, $b={\frac{w-1+(1-3w^2)c}{w(1+w^2)}}$, ${\frac{1}{2+2w}}$ < c < ${\frac{1}{(1+w)^2(1-w)}}$, $c{\neq}{\frac{1}{1+2w-w^2}}$), ($a={\frac{1+w(1+w)c}{1+w}}$, $b={\frac{-1+(1+w)c}{w(1+w)}}$, 0 < c < $\frac{1}{2+2w}$) or ($a={\frac{1=w(1+w)c}{1+w}}$, $b={\frac{1-(1+w)c}{1+w}}$, $\frac{1}{1+w}$ < c < $\frac{1}{(1+w)^2(1-w)}$).

GEOMETRY OF BILINEAR FORMS ON A NORMED SPACE ℝn

  • Sung Guen Kim
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.213-225
    • /
    • 2023
  • For every n ≥ 2, let ℝn‖·‖ be Rn with a norm ‖·‖ such that its unit ball has finitely many extreme points more than 2n. We devote to the description of the sets of extreme and exposed points of the closed unit balls of 𝓛(2n‖·‖) and 𝓛𝒮(2n‖·‖), where 𝓛(2n‖·‖) is the space of bilinear forms on ℝn‖·‖, and 𝓛𝒮(2n‖·‖) is the subspace of 𝓛(2n‖·‖) consisting of symmetric bilinear forms. Let 𝓕 = 𝓛(2n‖·‖) or 𝓛𝒮(2n‖·‖). First we classify the extreme and exposed points of the closed unit ball of 𝓕. We also show that every extreme point of the closed unit ball of 𝓕 is exposed. It is shown that ext B𝓛𝒮(2n‖·‖) = ext B𝓛(2n‖·‖) ∩ 𝓛𝒮(2n‖·‖) and exp B𝓛𝒮(2n‖·‖) = exp B𝓛(2n‖·‖) ∩ 𝓛𝒮(2n‖·‖), which expand some results of [18, 23, 28, 29, 35, 38, 40, 41, 43].

ALGEBRAS WITH PSEUDO-RIEMANNIAN BILINEAR FORMS

  • Chen, Zhiqi;Liang, Ke;Zhu, Fuhai
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.1-12
    • /
    • 2011
  • The purpose of this paper is to study pseudo-Riemannian algebras, which are algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. We nd that pseudo-Riemannian algebras whose left centers are isotropic play a curial role and show that the decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to a special automorphism. Furthermore, if the left center equals the center, the orthogonal decomposition of any pseudo-Riemannian algebra into indecomposable non-degenerate ideals is unique up to an isometry.

Extreme Points, Exposed Points and Smooth Points of the Space 𝓛s(2𝑙3)

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.485-505
    • /
    • 2020
  • We present a complete description of all the extreme points of the unit ball of 𝓛s(2𝑙3) which leads to a complete formula for ║f║ for every f ∈ 𝓛s(2𝑙3). We also show that $extB_{{\mathcal{L}}_s(^2l^3_{\infty})}{\subset}extB_{{\mathcal{L}}_s(^2l^n_{\infty})}$ for every n ≥ 4. Using the formula for ║f║ for every f ∈ 𝓛s(2𝑙3), we show that every extreme point of the unit ball of 𝓛s(2𝑙3) is exposed. We also characterize all the smooth points of the unit ball of 𝓛s(2𝑙3).