GEOMETRY OF BILINEAR FORMS ON A NORMED SPACE \mathbb{R}^{n}

Sung Guen Kim

Abstract

For every $n \geq 2$, let $\mathbb{R}_{\|\cdot\|}^{n}$ be \mathbb{R}^{n} with a norm $\|\cdot\|$ such that its unit ball has finitely many extreme points more than $2 n$. We devote to the description of the sets of extreme and exposed points of the closed unit balls of $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$, where $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ is the space of bilinear forms on $\mathbb{R}_{\|\cdot\|}^{n}$, and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ is the subspace of $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ consisting of symmetric bilinear forms. Let $\mathcal{F}=\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ or $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ First we classify the extreme and exposed points of the closed unit ball of \mathcal{F}. We also show that every extreme point of the closed unit ball of \mathcal{F} is exposed. It is shown that $\operatorname{ext} B_{\mathcal{L}_{s}\left(2^{2} \mathbb{R}_{\|\cdot\|}\right)}=\operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ and $\exp B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}=\exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$, which expand some results of $[18,23,28,29,35,38,40,41,43]$.

1. Introduction

Throughout the paper, we let $n, m \in \mathbb{N}, n, m \geq 2$. We write B_{E} and S_{E} for the closed unit ball and sphere of a real Banach space E. The dual space of E is denoted by E^{*}. An element $x \in B_{E}$ is called an extreme point of B_{E} if $y, z \in B_{E}$ with $x=\frac{1}{2}(y+z)$ implies $x=y=z$. An element $x \in B_{E}$ is called an exposed point of B_{E} if there is $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\}$. It is easy to see that every exposed point of B_{E} is an extreme point. An element $x \in B_{E}$ is called a smooth point of B_{E} if there is unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. We denote by $\operatorname{ext} B_{E}$, $\exp B_{E}$ and $\operatorname{sm} B_{E}$ the set of extreme points, the set of exposed points and the set of smooth points of B_{E}, respectively. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form T on the product $E \times \cdots \times E$ such that $P(x)=T(x, \ldots, x)$ for every $x \in E$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. We denote by $\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n-linear forms on E endowed with the norm

[^0]$\|T\|=\sup _{\left\|x_{k}\right\|=1}\left|T\left(x_{1}, \ldots, x_{n}\right)\right| . \quad \mathcal{L}_{s}\left({ }^{n} E\right)$ denotes the closed subspace of all continuous symmetric n-linear forms on E. Notice that $\mathcal{L}\left({ }^{n} E\right)$ is identified with the dual of n-fold projective tensor product $\hat{\bigotimes}_{\pi, n} E$. With this identification, the action of a continuous n-linear form T as a bounded linear functional on $\hat{\bigotimes}_{\pi, n} E$ is given by
$$
\left\langle\sum_{i=1}^{k} x^{(1), i} \otimes \cdots \otimes x^{(n), i}, T\right\rangle=\sum_{i=1}^{k} T\left(x^{(1), i}, \ldots, x^{(n), i}\right)
$$

Notice also that $\mathcal{L}_{s}\left({ }^{n} E\right)$ is identified with the dual of n-fold symmetric projective tensor product $\hat{\bigotimes}_{s, \pi, n} E$. With this identification, the action of a continuous symmetric n-linear form T as a bounded linear functional on $\hat{\bigotimes}_{s, \pi, n} E$ is given by

$$
\left\langle\sum_{i=1}^{k} \frac{1}{n!}\left(\sum_{\sigma} x^{\sigma(1), i} \otimes \cdots \otimes x^{\sigma(n), i}\right), T\right\rangle=\sum_{i=1}^{k} T\left(x^{(1), i}, \ldots, x^{(n), i}\right)
$$

where σ goes over all permutations on $\{1, \ldots, n\}$. For more details about the theory of polynomials and multilinear mappings on Banach spaces, we refer to [8].

Let us sketch the history of classification problems of the extreme points, the exposed points and smooth points of the unit ball of continuous n-homogeneous polynomials on a Banach space.

We let $l_{p}^{n}=\mathbb{R}^{n}$ for every $1 \leq p \leq \infty$ equipped with the l_{p}-norm. Choi and Kim [3] initiated and classified ext $B_{\mathcal{P}\left(l^{2} l_{2}^{2}\right)}$ and $\operatorname{sm} B_{\mathcal{P}\left(l^{2} l_{2}^{2}\right)}$. Choi, Ki and Kim [7] classified $\operatorname{ext} B_{\mathcal{P}\left(l_{1}^{2}\right)}$. Choi and Kim [5, 6] classified $\operatorname{sm} B_{\mathcal{P}\left(l_{1}^{2}\right)}$ and $\exp B_{\mathcal{P}\left({ }^{2} l_{p}^{2}\right)}$ for $p=1,2, \infty$. Grecu [12] classified $\operatorname{ext} B_{\mathcal{P}\left({ }^{2} l_{p}^{2}\right)}$ for $1<p<2$ or $2<p<\infty$. Kim and Lee [45] showed that if E is a separable real Hilbert space with $\operatorname{dim}(E) \geq 2$, then, $\operatorname{ext} B_{\mathcal{P}\left({ }^{2} E\right)}=\exp B_{\mathcal{P}\left({ }^{2} E\right)}$. Kim [17] classified $\exp B_{\mathcal{P}\left({ }^{2} l_{p}^{2}\right)}$ for $1 \leq p \leq \infty$. Kim [19, 21] characterized $\operatorname{ext} B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$ and $\operatorname{sm} B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm $\|(x, y)\|_{w}=$ $\max \left\{|x|,|y|, \frac{|x|+|y|}{1+w}\right\}$ for $0<w<1$. Kim [26] classified $\exp B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)}$ and showed that $\exp B_{\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)} \neq \operatorname{ext} B_{\left.\mathcal{P}^{(2} d_{*}(1, w)^{2}\right)}$. Recently, $\operatorname{Kim}[31,34]$ classified ext $B_{\left.\mathcal{P}^{2} \mathbb{R}_{h(1 / 2)}^{2}\right)}$ and $\exp B_{\mathcal{P}\left(\mathbb{R}_{h(1 / 2)}^{2}\right)}$, where $\mathbb{R}_{h(1 / 2)}^{2}=\mathbb{R}^{2}$ with the hexagonal norm $\|(x, y)\|_{h(1 / 2)}=\max \left\{|y|,|x|+\frac{1}{2}|y|\right\}$.

Parallel to the classification problems of $\operatorname{ext} B_{\mathcal{P}\left({ }^{n} E\right)}, \exp B_{\mathcal{P}\left({ }^{n} E\right)}$ and $\mathrm{sm} B_{\mathcal{P}\left(^{n} E\right)}$, it seems to be very natural to study the classification problems of the extreme points, the exposed points and smooth points of the unit ball of continuous (symmetric) multilinear forms on a Banach space.
$\operatorname{Kim}[18]$ initiated and classified $\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{2}\right)}, \exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}$ and $\operatorname{sm} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{2}\right)}$. It was shown that $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}=\exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}$. $\operatorname{Kim}[20,22,23,25]$ classified $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)}, \quad \operatorname{ext} B_{\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)}, \quad \exp B_{\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)}$, and $\exp B_{\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)}$.
$\operatorname{Kim}[29,30]$ also classified $\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}$ and $\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$. It was shown that $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}=\exp B_{\mathcal{L}_{s}\left({ }^{(} l_{\infty}^{3}\right)}$ and $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}=\exp B_{\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)}$. Kim [33] characterized ext $B_{\mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)}$ and ext $B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$, and showed that $\exp B_{\mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)}$ and $\exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)} . \quad$ Kim [35] characterized $\operatorname{ext} B_{\mathcal{L}\left({ }^{2} l_{\infty}^{3}\right)}$ and $\exp B_{\mathcal{L}\left({ }^{2} l_{\infty}^{3}\right)} . \operatorname{Kim}[36]$ characterized $\operatorname{sm} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)} . \operatorname{Kim}[37]$ studied ext $B_{\mathcal{L}\left({ }^{2} l_{\infty}\right)}$. Cavalcante et al. [2] characterized ext $B_{\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)}$. Kim [40] classified ext $B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}$ and ext $B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}$. It was shown that $\left|\operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}\right|=2^{\left(2^{n}\right)}$ and $\left|\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)}\right|=$ 2^{n+1}, and that $\exp B_{\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}\left(l^{n} l_{\infty}^{2}\right)}$ and $\exp B_{\mathcal{L}_{s}\left(l^{n} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{n} l_{\infty}^{2}\right)}$. $\operatorname{Kim}[39,42]$ characterized $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)}, \operatorname{ext} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)}, \exp B_{\mathcal{L}_{s}\left({ }^{m} l_{\infty}^{m}\right)}^{\infty}, \exp B_{\mathcal{L}\left(l^{n} l_{\infty}^{m}\right)}$, $\mathrm{sm} B_{\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)}$ and $\mathrm{sm} B_{\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)}$ for every $n, m \geq 2$. Kim [44] characterized $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{m} l_{1}\right)}, \operatorname{ext} B_{\mathcal{L}\left({ }^{m} l_{1}\right)}, \exp B_{\mathcal{L}_{s}\left({ }^{m} l_{1}\right)}, \exp B_{\mathcal{L}\left(m^{m} l_{1}\right)}, \operatorname{sm} B_{\mathcal{L}_{s}\left(m l_{1}^{n}\right)}$ and $\operatorname{sm} B_{\mathcal{L}\left(m l_{1}^{n}\right)}$ for $n, m \geq 2$. Recently, Kim [43] characterized $\operatorname{ext} B_{\mathcal{L}\left({ }^{n} \mathbb{R}_{\|\cdot\|}^{m}\right)}$, $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{n} \mathbb{R}_{\|\cdot\|}^{m}\right)}$, $\exp B_{\mathcal{L}\left({ }^{n} \mathbb{R}_{\|\cdot\|}^{m}\right)}$, and $\exp B_{\mathcal{L}_{s}\left({ }^{n} \mathbb{R}_{\|\cdot\|}^{m}\right)}$ if $\mathbb{R}_{\|\cdot\|}^{m}$ is \mathbb{R}^{m} with a norm $\|\cdot\|$ such that $\left|\operatorname{ext} B_{\mathbb{R}_{\|\cdot\|}^{m}}\right|=2 m$ for $m \geq 2$. It was shown that every extreme point is exposed in this case.

We refer to ([1-7, 9-15, 17-54] and references therein) for some recent work about extremal properties of homogeneous polynomials and multilinear forms on Banach spaces.

For every $n \geq 2$, let $\mathbb{R}_{\|\cdot\|}^{n}$ be \mathbb{R}^{n} with a norm $\|\cdot\|$ such that its unit ball has finitely many extreme points more than $2 n$. We devote to the description of the sets of extreme and exposed points of the closed unit balls of $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ and $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Let $\mathcal{F}=\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ or $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. First we classify the extreme and exposed points of the closed unit ball of \mathcal{F}. We also show that every extreme point of the closed unit ball of \mathcal{F} is exposed. It is shown that ext $B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}=$ $\operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ and $\exp B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}=\exp B_{\mathcal{L}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. We expand some results of $[18,23,28,29,35,38,40,41,43]$.

2. Extreme and exposed points of $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$

Throughout the paper, we let $n \geq 2$ and $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with a norm $\|\cdot\|$ such that $B_{\mathbb{R}_{\|\cdot\|}^{n}}$ has finitely many extreme points more than $2 n$. Let ext $B_{\mathbb{R}_{\|\cdot\|}^{n}}=$ $\left\{ \pm U_{1}, \ldots, \pm U_{m}\right\}$ for some $m \geq n$ and $U_{i} \neq U_{j}$ for $1 \leq i \neq j \leq m$. Let

$$
F_{l s}:=\frac{x_{l} y_{s}+x_{s} y_{l}}{2} \text { for } 1 \leq l \leq s \leq n .
$$

Notice that $\left\{F_{l s}: 1 \leq l \leq s \leq n\right\}$ is a basis for $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Hence, $\operatorname{dim}\left(\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)\right)$ $=\frac{n(n+1)}{2}$. By Mazur's theorem, $B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ is compact and convex. By the Krein-Milman theorem, $\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ is nonempty.

Let $T \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Then
$T\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{1 \leq l, s \leq n} a_{l s} x_{l} y_{s}=\sum_{1 \leq l \leq n} a_{l l} F_{l l}+\sum_{1 \leq l<s \leq n} 2 a_{l s} F_{l s}$
for some $a_{l s} \in \mathbb{R}$.
For simplicity, we denote
$T=\left(a_{11}, 2 a_{12}, \ldots, 2 a_{1 n}, a_{22}, 2 a_{23}, \ldots, 2 a_{2 n}, \ldots, a_{n-1 n-1}, 2 a_{n-1 n}, a_{n n}\right)^{t} \in \mathbb{R}^{\frac{n(n+1)}{2}}$.
For $j=1, \ldots, m$, we let $U_{j}=\sum_{1 \leq k \leq n} \lambda_{k}^{(j)} e_{k}$ for some $\lambda_{k}^{(j)} \in \mathbb{R}$.
It follows that for $1 \leq i \leq j \leq m$,

$$
\begin{aligned}
T\left(U_{i}, U_{j}\right) & =T\left(\sum_{1 \leq k \leq n} \lambda_{k}^{(i)} e_{k}, \sum_{1 \leq k \leq n} \lambda_{k}^{(j)} e_{k}\right)=\sum_{1 \leq k_{1}, k_{2} \leq n} \lambda_{k_{1}}^{(i)} \lambda_{k_{2}}^{(j)} T\left(e_{k_{1}}, e_{k_{2}}\right) \\
& =\sum_{1 \leq k_{1}, k_{2} \leq n} \lambda_{k_{1}}^{(i)} \lambda_{k_{2}}^{(j)} a_{k_{1} k_{2}}=X_{(i, j)} \cdot T
\end{aligned}
$$

where

$$
\begin{aligned}
X_{(i, j)}= & \left(\lambda_{1}^{(i)} \lambda_{1}^{(j)}, \frac{\lambda_{1}^{(i)} \lambda_{2}^{(j)}+\lambda_{2}^{(i)} \lambda_{1}^{(j)}}{2}, \ldots, \frac{\lambda_{1}^{(i)} \lambda_{n}^{(j)}+\lambda_{n}^{(i)} \lambda_{1}^{(j)}}{2}, \lambda_{2}^{(i)} \lambda_{2}^{(j)},\right. \\
& \frac{\lambda_{2}^{(i)} \lambda_{3}^{(j)}+\lambda_{3}^{(i)} \lambda_{2}^{(j)}}{2}, \ldots, \frac{\lambda_{2}^{(i)} \lambda_{n}^{(j)}+\lambda_{n}^{(i)} \lambda_{2}^{(j)}}{2}, \ldots, \lambda_{n-1}^{(i)} \lambda_{n-1}^{(j)}, \\
& \left.\frac{\lambda_{n-1}^{(i)} \lambda_{n}^{(j)}+\lambda_{n}^{(i)} \lambda_{n-1}^{(j)}}{2}, \lambda_{n}^{(i)} \lambda_{n}^{(j)}\right) \in \mathbb{R}^{\frac{n(n+1)}{2}}
\end{aligned}
$$

and $X_{(i, j)} \cdot T$ denotes the dot product of $X_{(i, j)}$ and T on $\mathbb{R}^{\frac{n(n+1)}{2}}$.
Let $\Gamma:=\{(i, j): 1 \leq i \leq j \leq m\}$. Then $|\Gamma|=\frac{m(m+1)}{2} \geq \frac{n(n+1)}{2}$. Notice that there are at most $\frac{n(n+1)}{2}$ linearly independent vectors in $\left\{X_{(i, j)}:(i, j) \in \Gamma\right\}$ since $\left\{X_{(i, j)}:(i, j) \in \Gamma\right\} \subseteq \mathbb{R}^{\frac{n(n+1)}{2}}$.

In this section we characterize $\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ and $\exp B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$, which expand some results of $[18,23,28,29,35,38,40,41,43]$. First, we present some examples.

Examples. (a) Let $n \geq 2$ and $\mathbb{R}_{\|\cdot\|}^{n}=l_{\infty}^{n}$. Then

$$
\operatorname{ext} B_{l_{\infty}^{n}}=\left\{ \pm\left(1, t_{2}, \ldots, t_{n}\right): t_{j}= \pm 1, j=2, \ldots, n\right\}
$$

Hence, $2 n \leq\left|\operatorname{ext} B_{l_{\infty}^{n}}\right|=2^{n}$.
(b) Let $0<w<1$ and $\mathbb{R}_{\|\cdot\|}^{2}=\mathbb{R}_{*(w)}^{2}$ with the octagonal norm $\|(x, y)\|_{*(w)}=$ $\max \left\{|x|,|y|, \frac{|x|+|y|}{1+w}\right\}$. Then $2 \cdot 2<\left|\operatorname{ext} B_{\mathbb{R}_{*(w)}^{2}}\right|=8$.
(c) Let $0<w<1$ and $\mathbb{R}_{\|\cdot\|}^{2}=\mathbb{R}_{h(w)}^{2}$ with the hexagonal norm $\|(x, y)\|_{h(w)}=$ $\max \{|y|,|x|+w|y|\}$. Then $2 \cdot 2<\left|\operatorname{ext} B_{\mathbb{R}_{h(w)}^{2}}\right|=6$.
(d) Let $\mathbb{R}_{\|\cdot\|}^{6}=\mathbb{R}^{6}$ with the $\mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$-norm

$$
\begin{aligned}
\|(a, b, c, d, e, f)\|_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{2}\right)}:=\max \{|a|,|b|,|d| & , \frac{1}{2}(|a-d|+|e|) \\
& \frac{1}{2}(|b-d|+|f|), \frac{1}{4}(|a+b-2 d|+|c|)
\end{aligned}
$$

$$
\left.\frac{1}{4}||a+b-2 d|-|c||+\frac{1}{2}|e-f|\right\} .
$$

$\operatorname{Kim}\left[41\right.$, Theorem 2] showed that $2 \cdot 6<\left|\operatorname{ext} B_{\mathbb{R}_{\|\cdot\|}^{6}}\right|=26$.
We present an explicit formulae for the norm of $T \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$.
Theorem 2.1. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be such that

$$
\operatorname{ext} B_{\mathbb{R}_{\|\cdot\|}^{n}}=\left\{ \pm U_{1}, \ldots, \pm U_{m}\right\}
$$

for some $m \geq n$ and $U_{i} \neq U_{j}$ for $1 \leq i \neq j \leq m$.
(a) If $T \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$, then

$$
\|T\|=\sup _{1 \leq i \leq j \leq m}\left|T\left(U_{i}, U_{j}\right)\right|=\sup _{1 \leq k \leq \frac{m(m+1)}{2}}\left|X_{\left(i_{k}, j_{k}\right)} \cdot T\right| .
$$

(b) If $c_{(i, j)} \in \mathbb{R}$ for $(i, j) \in \Gamma$ with $c_{(i, j)}=c_{(j, i)}$, then there is a unique $S \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ such that $S\left(U_{i}, U_{j}\right)=c_{(i, j)}$ for all $(i, j) \in \Gamma$.

Proof. It follows from the Krein-Milman theorem and bilinearity of T.
We are in position to prove the main result in this section.
Theorem 2.2. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be such that

$$
\operatorname{ext} B_{\mathbb{R}_{\|\cdot\|}^{n}}=\left\{ \pm U_{1}, \ldots, \pm U_{m}\right\}
$$

for some $m \geq n$ and $U_{i} \neq U_{j}$ for $1 \leq i \neq j \leq m$. Let $T \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ with $\|T\|=1$. Then $\left.T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2_{\mathbb{R}}^{\|\cdot\|}\right.}\right)$ if and only if there are $\frac{n(n+1)}{2}$ linearly independent vectors $X_{\left(i_{1}, j_{1}\right)}, \ldots, X_{\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right)}$ in $\mathbb{R}^{\frac{n(n+1)}{2}}$ for some $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right) \in \Gamma$ such that $\left|X_{\left(i_{k}, j_{k}\right)} \cdot T\right|=1$ for all $k=$ $1, \ldots, \frac{n(n+1)}{2}$.
Proof. (\Rightarrow) Suppose that T is extreme.
Claim: There are $\frac{n(n+1)}{2}$ linearly independent vectors $X_{\left(i_{1}, j_{1}\right)}, \ldots$, $X_{\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right)}$ in $\mathbb{R}^{\frac{n(n+1)}{2}}$ for some $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right) \in \Gamma$.

Assume the contrary. Let $N \in \mathbb{N}$ be the largest number of linearly independent vectors among $\left\{X_{(i, j)}:(i, j) \in \Gamma\right\}$. Then $N<\frac{n(n+1)}{2}$ and so there are $\epsilon_{\left(i_{k}, j_{k}\right)} \in \mathbb{R}$ for some $\left(i_{k}, j_{k}\right) \in \Gamma$ and $k=1, \ldots, \frac{n(n+1)}{2}$ such that

$$
\mathcal{E}=\left(\epsilon_{\left(i_{k}, j_{k}\right)}\right)_{1 \leq k \leq \frac{n(n+1)}{2}}^{t} \neq 0 \text { and } X_{(i, j)} \cdot \mathcal{E}=0 \text { all }(i, j) \in \Gamma .
$$

Let $T^{ \pm}=T \pm \mathcal{E}$. We will show that $\left\|T^{ \pm}\right\| \leq 1$. It follows that for $(i, j) \in \Gamma$,

$$
\begin{aligned}
\left|X_{(i, j)} \cdot T^{ \pm}\right| & \leq \max \left\{\left|X_{(i, j)} \cdot T+X_{(i, j)} \cdot \mathcal{E}\right|,\left|X_{(i, j)} \cdot T-X_{(i, j)} \cdot \mathcal{E}\right|\right\} \\
& =\left|X_{(i, j)} \cdot T\right| \leq\|T\|=1
\end{aligned}
$$

By Theorem 2.1(a), $\left\|T^{ \pm}\right\| \leq 1$. Since $T^{ \pm} \neq T$ and $T=\frac{1}{2}\left(T^{+}+T^{-}\right), T$ is not extreme. This is a contradiction.

Claim: $\left|X_{\left(i_{k}, j_{k}\right)} \cdot T\right|=1$ for all $k=1, \ldots, n(n+1) / 2$.
Assume the contrary. There is $k_{0} \in\{1, \ldots, n(n+1) / 2\}$ such that $\mid X_{\left(i_{k_{0}}, j_{k_{0}}\right)}$. $T \mid<1$. Let $t_{0} \in \mathbb{R}$ such that $0<t_{0}<1-\left|X_{\left(i_{k_{0}}, j_{k_{0}}\right)} \cdot T\right|$.

By Theorem 2.1(b), there are $L^{ \pm} \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ such that

$$
\begin{aligned}
L^{ \pm}\left(U_{i}, U_{j}\right) & :=T\left(U_{i}, U_{j}\right) \text { for }(i, j) \in \Gamma \backslash\left\{\left(i_{k_{0}}, j_{k_{0}}\right),\left(j_{k_{0}}, i_{k_{0}}\right)\right\} \text { and } \\
L^{ \pm}\left(U_{i_{k_{0}}}, U_{j_{k_{0}}}\right) & :=T\left(U_{i_{k_{0}}}, U_{j_{k_{0}}}\right) \pm t_{0} .
\end{aligned}
$$

By Theorem 2.1(a), $\left\|L^{ \pm}\right\| \leq 1$ for $l=1,2$. Since $L^{ \pm} \neq T$ and $T=\frac{1}{2}\left(L^{+}+L^{-}\right)$, T is not extreme. This is a contradiction.
(\Leftarrow) Let $S_{1}, S_{2} \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ be such that $\left\|S_{l}\right\|=1$ for $l=1,2$ and $T=$ $\frac{1}{2}\left(S_{1}+S_{2}\right)$.

Claim: $T=S_{l}$ for $l=1,2$.
Since $\left\|S_{l}\right\|=1$ for $l=1,2$, by Theorem 2.1(a),

$$
\left|X_{\left(i_{k}, j_{k}\right)} \cdot S_{l}\right| \leq 1 \text { for all } k=1, \ldots, n(n+1) / 2
$$

Let M be the $\frac{n(n+1)}{2} \times \frac{n(n+1)}{2}$-matrix such that the k-th row of M equals to $X_{\left(i_{k}, j_{k}\right)}$ for $k=1, \ldots, n(n+1) / 2$. Notice that M is an invertible $\frac{n(n+1)}{2} \times$ $\frac{n(n+1)}{2}$-matrix because rows vectors of M are linearly independent. Since $M T=\frac{1}{2}\left(M S_{1}+M S_{2}\right), X_{\left(i_{k}, j_{k}\right)} \cdot T$ (which is the k-th component of $\left.M T\right)$ equals to the middle point of the k-th components of $M S_{1}$ and $M S_{2}$. Hence,

$$
X_{\left(i_{k}, j_{k}\right)} \cdot T=\frac{1}{2}\left(X_{\left(i_{k}, j_{k}\right)} \cdot S_{1}+X_{\left(i_{k}, j_{k}\right)} \cdot S_{2}\right) \text { for all } k=1, \ldots, n(n+1) / 2
$$

Since

$$
\left|X_{\left(i_{k}, j_{k}\right)} \cdot T\right|=1 \text { for all } k=1, \ldots, n(n+1) / 2
$$

we have

$$
X_{\left(i_{k}, j_{k}\right)} \cdot T=X_{\left(i_{k}, j_{k}\right)} \cdot S_{l} \text { for all } k=1, \ldots, n(n+1) / 2 \text { and } l=1,2
$$

Hence, $M T=M S_{l}$ for $l=1,2$. Since M is invertible, $T=S_{l}$ for $l=1,2$. Therefore, T is extreme.

Using Theorem 2.2, we completely describe ext $B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$.
Theorem 2.3. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Then

$$
\begin{aligned}
\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}=\{ & M^{-1}\left(c_{1}, \ldots, c_{n(n+1) / 2}\right)^{t} \in S_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}: c_{k}= \pm 1, M \text { is } \\
& \text { the invertible } n(n+1) / 2 \times n(n+1) / 2 \text {-matrix such that } \\
& \text { the } k \text {-the row of } M \text { equals to } X_{\left(i_{k}, j_{k}\right)} \text { for }\left(i_{k}, j_{k}\right) \in \Gamma \\
& \text { and } k=1, \ldots, n(n+1) / 2\} .
\end{aligned}
$$

Proof. (\subseteq) Let $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$. By Theorem 2.2, there are $\frac{n(n+1)}{2}$ linearly independent vectors

$$
X_{\left(i_{1}, j_{1}\right)}, \ldots, X_{\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right)} \in \mathbb{R}^{\frac{n(n+1)}{2}}
$$

for some $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right) \in \Gamma$. Let $c_{k}=X_{\left(i_{k}, j_{k}\right)} \cdot T$ for $1 \leq$ $k \leq n(n+1) / 2$. By Theorem 2.2, $\left|c_{k}\right|=1$ for all $k=1, \ldots, n(n+1) / 2$. Notice that

$$
T=M^{-1}\left(c_{1}, \ldots, c_{n(n+1) / 2}\right)^{t} .
$$

(\supseteq) Let $L:=M^{-1}\left(c_{1}, \ldots, c_{n(n+1) / 2}\right)^{t} \in S_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ such that $c_{k}= \pm 1$ and M is the invertible $n(n+1) / 2 \times n(n+1) / 2$-matrix such that the k-the row of M equals to $X_{\left(i_{k}, j_{k}\right)}$ for $\left(i_{k}, j_{k}\right) \in \Gamma$ and $k=1, \ldots, n(n+1) / 2$. It follows that

$$
M L=M\left(M^{-1}\left(c_{1}, \ldots, c_{n(n+1) / 2}\right)^{t}\right)=\left(c_{1}, \ldots, c_{n(n+1) / 2}\right)^{t},
$$

which shows that

$$
\left|X_{\left(i_{k}, j_{k}\right)} \cdot L\right|=\left|c_{k}\right|=1 \text { for all } k=1, \ldots, n(n+1) / 2 .
$$

By Theorem 2.2, $L \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$.
Kim [23] showed the following theorem:
Theorem 2.4. Let E be a real Banach space such that ext B_{E} is finite. Suppose that $x \in \operatorname{ext} B_{E}$ satisfies that there exists an $f \in E^{*}$ with $f(x)=1=\|f\|$ and $|f(y)|<1$ for every $y \in \operatorname{ext} B_{E} \backslash\{ \pm x\}$. Then $x \in \exp B_{E}$.

Using Theorem 2.4, we show that every extreme point of $B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ is exposed.

Theorem 2.5. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Then the equality $\exp B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ holds.

Proof. Let $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$. By Theorem 2.2, there are

$$
\left(i_{1}, j_{1}\right), \ldots,\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right) \in \Gamma
$$

such that $X_{\left(i_{1}, j_{1}\right)}, \ldots, X_{\left(i_{n(n+1) / 2}, j_{n(n+1) / 2}\right)}$ are linearly independent in $\mathbb{R}^{\frac{n(n+1)}{2}}$ and $\left|X_{\left(i_{k}, j_{k}\right)} \cdot T\right|=\left|T\left(U_{i_{k}}, U_{j_{k}}\right)\right|=1$ for all $k=1, \ldots, n(n+1) / 2$. Let M be the invertible $\frac{n(n+1)}{2} \times \frac{n(n+1)}{2}$-matrix such that the k-th row of M equals to $X_{\left(i_{k}, j_{k}\right)}$ for $k=1, \ldots, n(n+1) / 2$. Let $f \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)^{*}$ be such that

$$
f=\frac{2}{n(n+1)} \sum_{k=1}^{\frac{n(n+1)}{2}} \operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) \delta_{\left(U_{i_{k}}, U_{j_{k}}\right)}
$$

where $\delta_{\left(U_{i}, U_{j}\right)}(S):=S\left(U_{i}, U_{j}\right)$ for $S \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Then $1=\|f\|=f(T)$. Let $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ be such that $|f(S)|=1$. We will show that $S=T$ or
$S=-T$. It follows that

$$
\begin{aligned}
1 & =|f(S)|=\left|\frac{2}{n(n+1)} \sum_{k=1}^{\frac{n(n+1)}{2}} \operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) S\left(U_{i_{k}}, U_{j_{k}}\right)\right| \\
& \leq \frac{2}{n(n+1)} \sum_{k=1}^{\frac{n(n+1)}{2}}\left|S\left(U_{i_{k}}, U_{j_{k}}\right)\right| \leq 1
\end{aligned}
$$

which shows that

$$
S\left(U_{i_{k}}, U_{j_{k}}\right)=\operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) \text { for } k=1, \ldots, n(n+1) / 2
$$

or

$$
S\left(U_{i_{k}}, U_{j_{k}}\right)=-\operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) \text { for } k=1, \ldots, n(n+1) / 2
$$

Suppose that

$$
S\left(U_{i_{k}}, U_{j_{k}}\right)=-\operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) \text { for } k=1, \ldots, n(n+1) / 2
$$

Since $\left|S\left(U_{i_{k}}, U_{j_{k}}\right)\right|=1=\left|T\left(U_{i_{k}}, U_{j_{k}}\right)\right|$ for all $k=1, \ldots, n(n+1) / 2$,

$$
S\left(U_{i_{k}}, U_{j_{k}}\right)=-T\left(U_{i_{k}}, U_{j_{k}}\right) \text { for all } k=1, \ldots, n(n+1) / 2
$$

It follows that for all $k=1, \ldots, n(n+1) / 2$,

$$
X_{\left(i_{k}, j_{k}\right)} \cdot S=S\left(U_{i_{k}}, U_{j_{k}}\right)=-T\left(U_{i_{k}}, U_{j_{k}}\right)=-X_{\left(i_{k}, j_{k}\right)} \cdot T
$$

which shows that $M S=-M T$. Since M is invertible, $S=-T$. Notice that if $S\left(U_{i_{k}}, U_{j_{k}}\right)=\operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right)$ for $k=1, \ldots, n(n+1) / 2$, then $S=T$. By Theorem 2.4, T is exposed.
$\operatorname{Kim}[18,23,28,29,35,38,40,41]$ showed that if $n \geq 2,0<w<1$ and $X=l_{\infty}^{n}, \mathbb{R}_{*(w)}^{2}, \mathbb{R}_{h(w)}^{2}$ or $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, then $\exp B_{\mathcal{L}_{s}\left({ }^{2} X\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} X\right)}$.

Using Theorem 2.5, we obtain the following:
Corollary 2.6. Let $n \geq 2,0<w<1$ and $X=l_{\infty}^{n}, \mathbb{R}_{*(w)}^{2}, \mathbb{R}_{h(w)}^{2}$ or $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$. Then the equality $\exp B_{\mathcal{L}_{s}\left({ }^{2} X\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} X\right)}$ holds.

3. Extreme and exposed points of $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$

Let $n \geq 2$ and $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with a norm $\|\cdot\|$ such that $B_{\mathbb{R}_{\|\cdot\|}^{n}}$ has finitely many extreme points more than $2 n$. Let ext $B_{\mathbb{R}_{\|\cdot\|}^{n}}=\left\{ \pm U_{1}, \ldots, \pm U_{m}\right\}$ for some $m \geq n$ and $U_{i} \neq U_{j}$ for $1 \leq i \neq j \leq m$. Notice that $\left\{x_{l} y_{s}: 1 \leq l, s \leq n\right\}$ is a basis for $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Hence, $\operatorname{dim}\left(\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)\right)=n^{2}$. By Mazur's theorem, $B_{\mathcal{L}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}$ is compact and convex. By the Krein-Milman theorem, ext $B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)}$ is nonempty.

Let $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$. Then

$$
T\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{1 \leq l, s \leq n} a_{l s} x_{l} y_{s}
$$

for some $a_{l s} \in \mathbb{R}$.

For simplicity, we denote

$$
T=\left(a_{11}, \ldots, a_{1 n}, a_{21}, \ldots, a_{2 n}, \ldots, a_{n 1}, \ldots, a_{n n}\right)^{t} \in \mathbb{R}^{n^{2}}
$$

For $j=1, \ldots, m$, we let $U_{j}=\sum_{1 \leq k \leq n} \lambda_{k}^{(j)} e_{k}$ for some $\lambda_{k}^{(j)} \in \mathbb{R}$.
It follows that for $1 \leq i \leq j \leq m$,

$$
\begin{aligned}
T\left(U_{i}, U_{j}\right) & =T\left(\sum_{1 \leq k \leq n} \lambda_{k}^{(i)} e_{k}, \sum_{1 \leq k \leq n} \lambda_{k}^{(j)} e_{k}\right)=\sum_{1 \leq k_{1}, k_{2} \leq n} \lambda_{k_{1}}^{(i)} \lambda_{k_{2}}^{(j)} T\left(e_{k_{1}}, e_{k_{2}}\right) \\
& =\sum_{1 \leq k_{1}, k_{2} \leq n} \lambda_{k_{1}}^{(i)} \lambda_{k_{2}}^{(j)} a_{k_{1} k_{2}}=Y_{(i, j)} \cdot T
\end{aligned}
$$

where $Y_{(i, j)}=\left(\lambda_{1}^{(i)} \lambda_{1}^{(j)}, \ldots, \lambda_{1}^{(i)} \lambda_{n}^{(j)}, \lambda_{2}^{(i)} \lambda_{1}^{(j)}, \ldots, \lambda_{2}^{(i)} \lambda_{n}^{(j)}, \ldots, \lambda_{n}^{(i)} \lambda_{1}^{(j)}, \ldots\right.$, $\left.\lambda_{n}^{(i)} \lambda_{n}^{(j)}\right) \in \mathbb{R}^{n^{2}}$ and $Y_{(i, j)} \cdot T$ denotes the dot product of $Y_{(i, j)}$ and T on $\mathbb{R}^{n^{2}}$.

Let $\Lambda:=\{(i, j): 1 \leq i, j \leq m\}$. Then $|\Lambda|=m^{2} \geq n^{2}$. Notice that there are at most n^{2} linearly independent vectors in $\left\{Y_{(i, j)}:(i, j) \in \Lambda\right\}$ since $\left\{Y_{(i, j)}:(i, j) \in \Lambda\right\} \subseteq \mathbb{R}^{n^{2}}$.

In this section we characterize $\operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ and $\exp B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$, which expand some results of $[25,35,38,39,43]$. First, we present an explicit formulae for the norm of $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$.
Theorem 3.1. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2.
(a) If $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$, then

$$
\|T\|=\sup _{1 \leq i, j \leq m}\left|T\left(U_{i}, U_{j}\right)\right|=\sup _{1 \leq k \leq m^{2}}\left|Y_{\left(i_{k}, j_{k}\right)} \cdot T\right| .
$$

(b) If $c_{(i, j)} \in \mathbb{R}$ for $(i, j) \in \Lambda$, then there is a unique $S \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ such that $S\left(U_{i}, U_{j}\right)=c_{(i, j)}$ for all $(i, j) \in \Lambda$.

Proof. It follows from the Krein-Milman theorem and bilinearity of T.
We are in position to prove the main result in this section.
Theorem 3.2. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Let $T \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ with $\|T\|=1$. Then $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ if and only if there are n^{2} linearly independent vectors $Y_{\left(i_{1}, j_{1}\right)}, \ldots, Y_{\left(i_{n^{2}}, j_{n^{2}}\right)}$ in $\mathbb{R}^{n^{2}}$ for some $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n^{2}}, j_{n^{2}}\right) \in \Lambda$ such that $\left|Y_{\left(i_{k}, j_{k}\right)} \cdot T\right|=1$ for all $k=$ $1, \ldots, n^{2}$.

Proof. (\Rightarrow) Suppose that T is extreme.
By similar arguments as in Theorems 2.2 and 3.1(b), there are n^{2} linearly independent vectors $Y_{\left(i_{1}, j_{1}\right)}, \ldots, Y_{\left(i_{n^{2}}, j_{n^{2}}\right)}$ in $\mathbb{R}^{n^{2}}$ for some $\left(i_{1}, j_{1}\right), \ldots,\left(i_{n^{2}}, j_{n^{2}}\right)$ $\in \Lambda$ such that $\left|Y_{\left(i_{k}, j_{k}\right)} \cdot T\right|=1$ for all $k=1, \ldots, n^{2}$.
(\Leftarrow) Let $S_{1}, S_{2} \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ be such that $\left\|S_{l}\right\|=1$ for $l=1,2$ and $T=$ $\frac{1}{2}\left(S_{1}+S_{2}\right)$.

Claim: $T=S_{l}$ for $l=1,2$.
Since $\left\|S_{l}\right\|=1$ for $l=1,2$, by Theorem 3.1(a), $\left|Y_{\left(i_{k}, j_{k}\right)} \cdot S_{l}\right| \leq 1$ for all $k=$ $1, \ldots, n^{2}$. Let M_{1} be the $n^{2} \times n^{2}$-matrix such that the k-th row of M_{1} equals to $Y_{\left(i_{k}, j_{k}\right)}$ for $k=1, \ldots, n^{2}$. Notice that M_{1} is an invertible $n^{2} \times n^{2}$-matrix because rows vectors of M_{1} are linearly independent. By similar arguments as in Theorem 2.2, $M_{1} T=M_{1} S_{l}$ for $l=1,2$. Since M_{1} is invertible, $T=S_{l}$ for $l=1,2$. Therefore, T is extreme.

Using Theorem 3.2, we completely describe ext $B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$.
Theorem 3.3. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Then

$$
\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}=\left\{M^{-1}\left(b_{1}, \ldots, b_{n^{2}}\right)^{t} \in S_{\mathcal{L}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}: b_{k}= \pm 1, M\right. \text { is }
$$

the invertible $n^{2} \times n^{2}$-matrix such that the k-the row of M equals to $Y_{\left(i_{k}, j_{k}\right)}$ for $\left(i_{k}, j_{k}\right) \in \Lambda$ and $\left.k=1, \ldots, n^{2}\right\}$.
Proof. By similar arguments as in Theorems 2.3 and 3.2, it follows.
Using Theorem 3.3, we show that every extreme point of $B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ is exposed.
Theorem 3.4. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Then $\exp B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$.
Proof. Let $T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)}$. By Theorem 3.2, there are

$$
\left(i_{1}, j_{1}\right), \ldots,\left(i_{n^{2}}, j_{n^{2}}\right) \in \Lambda
$$

such that $Y_{\left(i_{1}, j_{1}\right)}, \ldots, Y_{\left(i_{n^{2}}, j_{n^{2}}\right)}$ are linearly independent in $\mathbb{R}^{n^{2}}$ and $\mid Y_{\left(i_{k}, j_{k}\right)}$. $T\left|=\left|T\left(U_{i_{k}}, U_{j_{k}}\right)\right|=1\right.$ for all $k=1, \ldots, n^{2}$. Let M_{1} be the invertible $n^{2} \times n^{2}-$ matrix such that the k-th row of M_{1} equals to $Y_{\left(i_{k}, j_{k}\right)}$ for $k=1, \ldots, n^{2}$. Let $f \in \mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)^{*}$ be such that

$$
f=\frac{1}{n^{2}} \sum_{k=1}^{n^{2}} \operatorname{sign}\left(T\left(U_{i_{k}}, U_{j_{k}}\right)\right) \delta_{\left(U_{i_{k}}, U_{j_{k}}\right)} .
$$

Then $1=\|f\|=f(T)$. Let $S \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}$ be such that $|f(S)|=1$. By similar arguments as in Theorem 2.5, $S=T$ or $S=-T$. By Theorem 2.4, T is exposed.
$\operatorname{Kim}[25,35,38,39]$ showed that if $n \geq 2,0<w<1$ and $X=l_{\infty}^{n}$ or $\mathbb{R}_{*(w)}^{2}$, then $\exp B_{\mathcal{L}\left({ }^{2} X\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{2} X\right)}$.

Using Theorem 3.4, we obtain the following:

Corollary 3.5. Let $n \geq 2,0<w<1$ and $X=l_{\infty}^{n}, \mathbb{R}_{*(w)}^{2}, \mathbb{R}_{h(w)}^{2}$ or $\mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$. Then the equality $\exp B_{\mathcal{L}\left({ }^{2} X\right)}=\operatorname{ext} B_{\mathcal{L}\left({ }^{2} X\right)}$ holds.

The following theorem shows a relation between the spaces $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$ and $\mathcal{L}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$.
Theorem 3.6. Let $n \geq 2$ and let $\mathbb{R}_{\|\cdot\|}^{n}=\mathbb{R}^{n}$ with the norm $\|\cdot\|$ be the same as in Theorem 2.2. Then the following equalities hold:
(a) $\operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)}=\operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)$.
(b) $\exp B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)}=\exp B_{\mathcal{L}\left(\mathbb{R}_{\|\cdot\|}^{n}\right)} \cap \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{\|\cdot\|}^{n}\right)$.

Proof. (a) It follows from Theorems 2.2 and 3.2.
(b) It follows from Theorems 2.5, 3.4 and (a).

References

[1] R. M. Aron and M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), no. 1, 73-80. https://doi.org/10.1007/s000130050544
[2] W. V. Cavalcante, D. M. Pellegrino, and E. V. Teixeira, Geometry of multilinear forms, Commun. Contemp. Math. 22 (2020), no. 2, 1950011, 26 pp. https://doi.org/10.1142/ S0219199719500111
[3] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), no. 6, 472-480. https://doi.org/10.1007/s000130050292
[4] Y. S. Choi and S. G. Kim, Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), no. 10, 983-989.
[5] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), no. 1-2, 26-33. https://doi.org/10.1007/BF03322099
[6] Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(p=$ $1,2, \infty)$, Indian J. Pure Appl. Math. 35 (2004), no. 1, 37-41.
[7] Y. S. Choi, S. G. Kim, and H. Ki, Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), no. 2, 467-482. https://doi.org/10.1006/jmaa. 1998. 6161
[8] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/ 978-1-4471-0869-6
[9] J. L. Gámez-Merino, G. A. Muñoz-Fernández, V. M. Sánchez, and J. B. SeoaneSepúlveda, Inequalities for polynomials on the unit square via the Krein-Milman theorem, J. Convex Anal. 20 (2013), no. 1, 125-142.
[10] B. C. Grecu, Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (2000), no. 1, 217-229. https://doi.org/10.1006/jmaa. 2000. 6783
[11] B. C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445-454. https://doi.org/10.1007/PL00000456
[12] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_{p} spaces, 1, J. Math. Anal. Appl. 273 (2002), no. 2, 262-282. https://doi.org/10.1016/S0022-247X(02)00217-2
[13] B. C. Grecu, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (2002), no. 4, 421-435. https://doi.org/10.2989/16073600209486027
[14] B. C. Grecu, Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl. 293 (2004), no. 2, 578-588. https://doi.org/10.1016/j. jmaa.2004.01.020
[15] B. C. Grecu, G. A. Muñoz-Fernández, and J. B. Seoane-Sepúlveda, The unit ball of the complex $\mathcal{P}\left({ }^{3} H\right)$, Math. Z. 263 (2009), no. 4, 775-785. https://doi.org/10.1007/ s00209-008-0438-y
[16] R. B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York, 1975.
[17] S. G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{P}^{2}\right)$ for $1 \leq p \leq \infty$, Math. Proc. R. Ir. Acad. 107 (2007), no. 2, 123-129. https://doi.org/10.3318/PRIA.2007.107.2. 123
[18] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math. 24 (2009), no. 1, 17-29.
[19] S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} D_{*}(1, W)^{2}\right)$, Math. Proc. R. Ir. Acad. 111A (2011), no. 2, 79-94. https://doi.org/10.3318/pria.2011.111.1.9
[20] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 2, 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295
[21] S. G. Kim, Smooth polynomials of $\mathcal{P}\left({ }^{2} D_{*}(1, W)^{2}\right)$, Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58. https://doi.org/10.3318/PRIA.2013.113.05
[22] S. G. Kim, Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 4, 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625
[23] S. G. Kim, Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 54 (2014), no. 3, 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341
[24] S. G. Kim, Polarization and unconditional constants of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Commun. Korean Math. Soc. 29 (2014), no. 3, 421-428. https://doi.org/10.4134/CKMS.2014.29.3.421
[25] S. G. Kim, Exposed bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 55 (2015), no. 1, 119-126. https://doi.org/10.5666/KMJ.2015.55.1.119
[26] S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), no. 5, 2827-2839. https: //doi.org/10.1007/s00009-015-0658-4
[27] S. G. Kim, The unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Bull. Korean Math. Soc. 54 (2017), no. 2, 417-428. https://doi.org/10.4134/BKMS.b150851
[28] S. G. Kim, Extremal problems for $\mathcal{L}_{s}\left(\mathbb{R}_{h(w)}^{2}\right)$, Kyungpook Math. J. 57 (2017), no. 2, 223-232. https://doi.org/10.5666/KMJ.2017.57.2.223
[29] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)$, Comment. Math. 57 (2017), no. 1, 1-7. https: //doi.org/10.14708/cm.v57i1.1230
[30] S. G. Kim, The geometry of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, Commun. Korean Math. Soc. 32 (2017), no. 4, 991-997. https://doi.org/10.4134/CKMS.c170016
[31] S. G. Kim, Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), no. 3, 362-393. https://doi.org/10.1556/012.2017.54.3.1371
[32] S. G. Kim, The geometry of $\mathcal{L}\left({ }^{3} l_{\infty}^{2}\right)$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math. 33 (2018), no. 1, 5166.
[33] S. G. Kim, Extreme bilinear forms on \mathbb{R}^{n} with the supremum norm, Period. Math. Hungar. $\mathbf{7 7}$ (2018), no. 2, 274-290. https://doi.org/10.1007/s10998-018-0246-z
[34] S. G. Kim, Exposed polynomials of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Extracta Math. 33 (2018), no. 2, 127143.
[35] S. G. Kim, The unit ball of the space of bilinear forms on \mathbb{R}^{3} with the supremum norm, Commun. Korean Math. Soc. 34 (2019), no. 2, 487-494. https://doi.org/10.4134/ CKMS.c180111
[36] S. G. Kim, Smooth points of $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$, Bull. Korean Math. Soc. 57 (2020), no. 2, 443447. https://doi.org/10.4134/BKMS.b190311
[37] S. G. Kim, Extreme points of the space $\mathcal{L}\left({ }^{2} l_{\infty}\right)$, Commun. Korean Math. Soc. 35 (2020), no. 3, 799-807. https://doi.org/10.4134/CKMS.c190300
[38] S. G. Kim, Extreme points, exposed points and smooth points of the space $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, Kyungpook Math. J. 60 (2020), no. 3, 485-505.
[39] S. G. Kim, The unit balls of $\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ and $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)$, Studia Sci. Math. Hungar. 57 (2020), no. 3, 267-283. https://doi.org/10.1556/012.2020.57.3.1470
[40] S. G. Kim, Extreme and exposed points of $\mathcal{L}\left({ }^{n} l_{\infty}^{2}\right)$ and $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{2}\right)$, Extracta Math. 35 (2020), no. 2, 127-135. https://doi.org/10.17398/2605-5686.35.2.127
[41] S. G. Kim, Extreme and exposed symmetric bilinear forms on the space $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Carpathian Math. Publ. 12 (2020), no. 2, 340-352. https://doi.org/10.15330/cmp. 12.2.340-352
[42] S. G. Kim, Smooth points of $\mathcal{L}\left({ }^{n} l_{\infty}^{m}\right)$ and $\mathcal{L}_{s}\left({ }^{n} l_{\infty}^{m}\right)$, Comment. Math. 60 (2020), no. 1-2, 13-21.
[43] S. G. Kim, Geometry of multilinear forms on \mathbb{R}^{m} with a certain norm, Acta Sci. Math. (Szeged) 87 (2021), no. 1-2, 233-245. https://doi.org/10.14232/actasm-020-824-2
[44] S. G. Kim, Geometry of multilinear forms on l_{1}, Acta Comment. Univ. Tartu. Math. 25 (2021), no. 1, 57-66. https://doi.org/10.12697/acutm.2021.25.04
[45] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
[46] A. G. Konheim and T. J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505-507. https://doi.org/10.2307/2315472
[47] M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133-138. https://doi.org/10.4064/sm-9-1-133-138
[48] L. Milev and N. Naidenov, Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulgare Sci. 61 (2008), no. 11, 1393-1400.
[49] L. Milev and N. Naidenov, Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl. 405 (2013), no. 2, 631-641. https://doi.org/10.1016/j. jmaa. 2013.04.026
[50] G. A. Muñoz-Fernández, D. Pellegrino, J. B. Seoane-Sepúlveda, and A. Weber, Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal. 21 (2014), no. 3, 745-764.
[51] G. A. Muñoz-Fernández, S. Gy. Révész, and J. B. Seoane-Sepúlveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), no. 1, 147-160. https://doi.org/10.7146/math.scand.a-15111
[52] G. A. Muñoz-Fernández and J. B. Seoane-Sepúlveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), no. 2, 1069-1087. https://doi.org/10. 1016/j.jmaa. 2007.09.010
[53] S. Neuwirth, The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371-396. https://doi.org/10.1007/s11854-008-0028-2
[54] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698-711. https://doi.org/10.1006/jmaa.1998.5942

Sung Guen Kim
Department of Mathematics
Kyungrook National University
Daegu 41566, Korea
Email address: sgk317@knu.ac.kr

[^0]: Received June 2, 2022; Accepted September 26, 2022.
 2020 Mathematics Subject Classification. 46A22.
 Key words and phrases. Bilinear forms, symmetric bilinear forms, extreme points, exposed points.

