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GEOMETRY OF BILINEAR FORMS ON

A NORMED SPACE Rn

Sung Guen Kim

Abstract. For every n ≥ 2, let Rn
‖·‖ be Rn with a norm ‖ · ‖ such

that its unit ball has finitely many extreme points more than 2n. We

devote to the description of the sets of extreme and exposed points of

the closed unit balls of L(2Rn
‖·‖) and Ls(2Rn

‖·‖), where L(2Rn
‖·‖) is the

space of bilinear forms on Rn
‖·‖, and Ls(2Rn

‖·‖) is the subspace of L(2Rn
‖·‖)

consisting of symmetric bilinear forms. Let F = L(2Rn
‖·‖) or Ls(2Rn

‖·‖).

First we classify the extreme and exposed points of the closed unit ball of

F . We also show that every extreme point of the closed unit ball of F is

exposed. It is shown that extBLs(2Rn
‖·‖)

= extBL(2Rn
‖·‖)
∩Ls(2Rn

‖·‖) and

expBLs(2Rn
‖·‖)

= expBL(2Rn
‖·‖)
∩ Ls(2Rn

‖·‖), which expand some results

of [18,23,28,29,35,38,40,41,43].

1. Introduction

Throughout the paper, we let n,m ∈ N, n,m ≥ 2. We write BE and SE
for the closed unit ball and sphere of a real Banach space E. The dual space
of E is denoted by E∗. An element x ∈ BE is called an extreme point of BE
if y, z ∈ BE with x = 1

2 (y + z) implies x = y = z. An element x ∈ BE is
called an exposed point of BE if there is f ∈ E∗ so that f(x) = 1 = ‖f‖ and
f(y) < 1 for every y ∈ BE \ {x}. It is easy to see that every exposed point of
BE is an extreme point. An element x ∈ BE is called a smooth point of BE if
there is unique f ∈ E∗ so that f(x) = 1 = ‖f‖. We denote by extBE , expBE
and smBE the set of extreme points, the set of exposed points and the set
of smooth points of BE , respectively. A mapping P : E → R is a continuous
n-homogeneous polynomial if there exists a continuous n-linear form T on the
product E × · · · ×E such that P (x) = T (x, . . . , x) for every x ∈ E. We denote
by P(nE) the Banach space of all continuous n-homogeneous polynomials from
E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|. We denote by L(nE)
the Banach space of all continuous n-linear forms on E endowed with the norm
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‖T‖ = sup‖xk‖=1 |T (x1, . . . , xn)|. Ls(nE) denotes the closed subspace of all

continuous symmetric n-linear forms on E. Notice that L(nE) is identified with

the dual of n-fold projective tensor product
⊗̂

π,nE. With this identification,
the action of a continuous n-linear form T as a bounded linear functional on⊗̂

π,nE is given by

〈 k∑
i=1

x(1),i ⊗ · · · ⊗ x(n),i, T
〉

=

k∑
i=1

T
(
x(1),i, . . . , x(n),i

)
.

Notice also that Ls(nE) is identified with the dual of n-fold symmetric projec-

tive tensor product
⊗̂

s,π,nE. With this identification, the action of a contin-

uous symmetric n-linear form T as a bounded linear functional on
⊗̂

s,π,nE is
given by〈 k∑

i=1

1

n!

(∑
σ

xσ(1),i ⊗ · · · ⊗ xσ(n),i
)
, T
〉

=

k∑
i=1

T
(
x(1),i, . . . , x(n),i

)
,

where σ goes over all permutations on {1, . . . , n}. For more details about the
theory of polynomials and multilinear mappings on Banach spaces, we refer to
[8].

Let us sketch the history of classification problems of the extreme points, the
exposed points and smooth points of the unit ball of continuous n-homogeneous
polynomials on a Banach space.

We let lnp = Rn for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Choi
and Kim [3] initiated and classified extBP(2l22) and smBP(2l22). Choi, Ki and

Kim [7] classified extBP(2l21). Choi and Kim [5, 6] classified smBP(2l21) and

expBP(2l2p) for p = 1, 2,∞. Grecu [12] classified extBP(2l2p) for 1 < p < 2 or

2 < p < ∞. Kim and Lee [45] showed that if E is a separable real Hilbert
space with dim(E) ≥ 2, then, extBP(2E) = expBP(2E). Kim [17] classified
expBP(2l2p) for 1 ≤ p ≤ ∞. Kim [19, 21] characterized extBP(2d∗(1,w)2) and

smBP(2d∗(1,w)2), where d∗(1, w)2 = R2 with the octagonal norm ‖(x, y)‖w =

max
{
|x|, |y|, |x|+|y|1+w

}
for 0 < w < 1. Kim [26] classified expBP(2d∗(1,w)2) and

showed that expBP(2d∗(1,w)2) 6= extBP(2d∗(1,w)2). Recently, Kim [31, 34] clas-

sified extBP(2R2
h(1/2)

) and expBP(2R2
h(1/2)

), where R2
h(1/2) = R2 with the hexag-

onal norm ‖(x, y)‖h(1/2) = max
{
|y|, |x|+ 1

2 |y|
}

.

Parallel to the classification problems of extBP(nE), expBP(nE) and
smBP(nE), it seems to be very natural to study the classification problems
of the extreme points, the exposed points and smooth points of the unit ball
of continuous (symmetric) multilinear forms on a Banach space.

Kim [18] initiated and classified extBLs(2l2∞), expBLs(2l2∞) and smBLs(2l2∞).
It was shown that extBLs(2l2∞) = expBLs(2l2∞). Kim [20, 22, 23, 25] classified
extBLs(2d∗(1,w)2), extBL(2d∗(1,w)2), expBLs(2d∗(1,w)2), and expBL(2d∗(1,w)2).
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Kim [29, 30] also classified extBLs(2l3∞) and expBLs(3l2∞). It was shown that
extBLs(2l3∞) = expBLs(2l3∞) and extBLs(3l2∞) = expBLs(3l2∞). Kim [33] charac-
terized extBL(2ln∞) and extBLs(2ln∞), and showed that expBL(2ln∞) =extBL(2ln∞)

and expBLs(2ln∞) = extBLs(2ln∞). Kim [35] characterized extBL(2l3∞) and
expBL(2l3∞). Kim [36] characterized smBLs(nl2∞). Kim [37] studied extBL(2l∞).
Cavalcante et al. [2] characterized extBL(nlm∞). Kim [40] classified extBL(nl2∞)

and extBLs(nl2∞). It was shown that | extBL(nl2∞)| = 2(2
n) and | extBLs(nl2∞)| =

2n+1, and that expBL(nl2∞) = extBL(nl2∞) and expBLs(nl2∞) = extBLs(nl2∞).
Kim [39,42] characterized extBLs(nlm∞), extBL(nlm∞), expBLs(mlm∞), expBL(nlm∞),
smBLs(nlm∞) and smBL(nlm∞) for every n,m ≥ 2. Kim [44] characterized
extBLs(ml1), extBL(ml1), expBLs(ml1), expBL(ml1), smBLs(mln1 )

and smBL(mln1 )
for n,m ≥ 2. Recently, Kim [43] characterized extBL(nRm

‖·‖)
, extBLs(nRm

‖·‖)
,

expBL(nRm
‖·‖)

, and expBLs(nRm
‖·‖)

if Rm‖·‖ is Rm with a norm ‖ · ‖ such that

| extBRm
‖·‖
| = 2m for m ≥ 2. It was shown that every extreme point is exposed

in this case.
We refer to ([1–7, 9–15, 17–54] and references therein) for some recent work

about extremal properties of homogeneous polynomials and multilinear forms
on Banach spaces.

For every n ≥ 2, let Rn‖·‖ be Rn with a norm ‖ · ‖ such that its unit ball has

finitely many extreme points more than 2n. We devote to the description of
the sets of extreme and exposed points of the closed unit balls of L(2Rn‖·‖) and

Ls(2Rn‖·‖). Let F = L(2Rn‖·‖) or Ls(2Rn‖·‖). First we classify the extreme and

exposed points of the closed unit ball of F . We also show that every extreme
point of the closed unit ball of F is exposed. It is shown that extBLs(2Rn

‖·‖)
=

extBL(2Rn
‖·‖)
∩ Ls(2Rn‖·‖) and expBLs(2Rn

‖·‖)
= expBL(2Rn

‖·‖)
∩ Ls(2Rn‖·‖). We

expand some results of [18,23,28,29,35,38,40,41,43].

2. Extreme and exposed points of Ls(
2Rn
‖·‖)

Throughout the paper, we let n ≥ 2 and Rn‖·‖ = Rn with a norm ‖ · ‖ such

that BRn
‖·‖

has finitely many extreme points more than 2n. Let extBRn
‖·‖

=

{±U1, . . . ,±Um} for some m ≥ n and Ui 6= Uj for 1 ≤ i 6= j ≤ m. Let

Fls :=
xlys + xsyl

2
for 1 ≤ l ≤ s ≤ n.

Notice that {Fls :1 ≤ l ≤ s ≤ n} is a basis for Ls(2Rn‖·‖). Hence, dim(Ls(2Rn‖·‖))
= n(n+1)

2 . By Mazur’s theorem, BLs(2Rn
‖·‖)

is compact and convex. By the

Krein-Milman theorem, extBLs(2Rn
‖·‖)

is nonempty.

Let T ∈ Ls(2Rn‖·‖). Then

T
(

(x1, . . . , xn), (y1, . . . , yn)
)

=
∑

1≤l,s≤n

alsxlys =
∑

1≤l≤n

allFll+
∑

1≤l<s≤n

2alsFls
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for some als ∈ R.
For simplicity, we denote

T =
(
a11, 2a12, . . . , 2a1n, a22, 2a23, . . . , 2a2n, . . . , an−1n−1, 2an−1n, ann

)t
∈ R

n(n+1)
2 .

For j = 1, . . . ,m, we let Uj =
∑

1≤k≤n λ
(j)
k ek for some λ

(j)
k ∈ R.

It follows that for 1 ≤ i ≤ j ≤ m,

T (Ui, Uj) = T
( ∑

1≤k≤n

λ
(i)
k ek,

∑
1≤k≤n

λ
(j)
k ek

)
=

∑
1≤k1,k2≤n

λ
(i)
k1
λ
(j)
k2

T (ek1 , ek2)

=
∑

1≤k1,k2≤n

λ
(i)
k1
λ
(j)
k2
ak1k2 = X(i,j) · T,

where

X(i,j) =
(
λ
(i)
1 λ

(j)
1 ,

λ
(i)
1 λ

(j)
2 + λ

(i)
2 λ

(j)
1

2
, . . . ,

λ
(i)
1 λ

(j)
n + λ

(i)
n λ

(j)
1

2
, λ

(i)
2 λ

(j)
2 ,

λ
(i)
2 λ

(j)
3 + λ

(i)
3 λ

(j)
2

2
, . . . ,

λ
(i)
2 λ

(j)
n + λ

(i)
n λ

(j)
2

2
, . . . , λ

(i)
n−1λ

(j)
n−1,

λ
(i)
n−1λ

(j)
n + λ

(i)
n λ

(j)
n−1

2
, λ(i)n λ(j)n

)
∈ R

n(n+1)
2

and X(i,j) · T denotes the dot product of X(i,j) and T on R
n(n+1)

2 .

Let Γ := {(i, j) : 1 ≤ i ≤ j ≤ m}. Then |Γ| = m(m+1)
2 ≥ n(n+1)

2 . Notice that

there are at most n(n+1)
2 linearly independent vectors in {X(i,j) : (i, j) ∈ Γ}

since {X(i,j) : (i, j) ∈ Γ} ⊆ R
n(n+1)

2 .
In this section we characterize extBLs(2Rn

‖·‖)
and expBLs(2Rn

‖·‖)
, which ex-

pand some results of [18, 23, 28, 29, 35, 38, 40, 41, 43]. First, we present some
examples.

Examples. (a) Let n ≥ 2 and Rn‖·‖ = ln∞. Then

extBln∞ =
{
± (1, t2, . . . , tn) : tj = ±1, j = 2, . . . , n

}
.

Hence, 2n ≤ | extBln∞ | = 2n.

(b) Let 0 < w < 1 and R2
‖·‖ = R2

∗(w) with the octagonal norm ‖(x, y)‖∗(w) =

max
{
|x|, |y|, |x|+|y|1+w

}
. Then 2 · 2 <

∣∣∣ extBR2
∗(w)

∣∣∣ = 8.

(c) Let 0 < w < 1 and R2
‖·‖ = R2

h(w) with the hexagonal norm ‖(x, y)‖h(w) =

max
{
|y|, |x|+ w|y|

}
. Then 2 · 2 <

∣∣∣ extBR2
h(w)

∣∣∣ = 6.

(d) Let R6
‖·‖ = R6 with the L(2l2∞)-norm∥∥∥(a, b, c, d, e, f)

∥∥∥
Ls(2l2∞)

:= max
{
|a|, |b|, |d|, 1

2

(
|a− d|+ |e|

)
,

1

2

(
|b− d|+ |f |

)
,

1

4

(
|a+ b− 2d|+ |c|

)
,
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1

4

∣∣∣ |a+ b− 2d| − |c|
∣∣∣+

1

2
|e− f |

}
.

Kim [41, Theorem 2] showed that 2 · 6 <
∣∣∣ extBR6

‖·‖

∣∣∣ = 26.

We present an explicit formulae for the norm of T ∈ Ls(2Rn‖·‖).

Theorem 2.1. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be such that

extBRn
‖·‖

= {±U1, . . . ,±Um}

for some m ≥ n and Ui 6= Uj for 1 ≤ i 6= j ≤ m.
(a) If T ∈ Ls(2Rn‖·‖), then

‖T‖ = sup
1≤i≤j≤m

|T (Ui, Uj)| = sup
1≤k≤m(m+1)

2

|X(ik,jk) · T |.

(b) If c(i,j) ∈ R for (i, j) ∈ Γ with c(i,j) = c(j,i), then there is a unique

S ∈ Ls(2Rn‖·‖) such that S(Ui, Uj) = c(i,j) for all (i, j) ∈ Γ.

Proof. It follows from the Krein-Milman theorem and bilinearity of T . �

We are in position to prove the main result in this section.

Theorem 2.2. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be such that

extBRn
‖·‖

= {±U1, . . . ,±Um}

for some m ≥ n and Ui 6= Uj for 1 ≤ i 6= j ≤ m. Let T ∈ Ls(2Rn‖·‖)
with ‖T‖ = 1. Then T ∈ extBLs(2Rn

‖·‖)
if and only if there are n(n+1)

2 lin-

early independent vectors X(i1,j1), . . . , X(in(n+1)/2, jn(n+1)/2) in R
n(n+1)

2 for some

(i1, j1), . . . , (in(n+1)/2, jn(n+1)/2) ∈ Γ such that |X(ik,jk) · T | = 1 for all k =

1, . . . , n(n+1)
2 .

Proof. (⇒) Suppose that T is extreme.

Claim: There are n(n+1)
2 linearly independent vectors X(i1,j1), . . . ,

X(in(n+1)/2, jn(n+1)/2) in R
n(n+1)

2 for some (i1, j1), . . . , (in(n+1)/2, jn(n+1)/2) ∈ Γ.

Assume the contrary. Let N ∈ N be the largest number of linearly indepen-

dent vectors among {X(i,j) : (i, j) ∈ Γ}. Then N < n(n+1)
2 and so there are

ε(ik,jk) ∈ R for some (ik, jk) ∈ Γ and k = 1, . . . , n(n+1)
2 such that

E = (ε(ik,jk))
t

1≤k≤n(n+1)
2

6= 0 and X(i,j) · E = 0 all (i, j) ∈ Γ.

Let T± = T ± E . We will show that ‖T±‖ ≤ 1. It follows that for (i, j) ∈ Γ,

|X(i,j) · T±| ≤ max
{
|X(i,j) · T +X(i,j) · E|, |X(i,j) · T −X(i,j) · E|

}
= |X(i,j) · T | ≤ ‖T‖ = 1.
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By Theorem 2.1(a), ‖T±‖ ≤ 1. Since T± 6= T and T = 1
2 (T+ + T−), T is not

extreme. This is a contradiction.

Claim: |X(ik,jk) · T | = 1 for all k = 1, . . . , n(n+ 1)/2.

Assume the contrary. There is k0 ∈ {1, . . . , n(n+ 1)/2} such that |X(ik0
,jk0

) ·
T | < 1. Let t0 ∈ R such that 0 < t0 < 1− |X(ik0

,jk0
) · T |.

By Theorem 2.1(b), there are L± ∈ Ls(2Rn‖·‖) such that

L±(Ui, Uj) := T (Ui, Uj) for (i, j) ∈ Γ\{(ik0 , jk0), (jk0 , ik0)} and

L±(Uik0
, Ujk0

) := T (Uik0
, Ujk0

)± t0.

By Theorem 2.1(a), ‖L±‖ ≤ 1 for l = 1, 2. Since L± 6= T and T = 1
2 (L+ +L−),

T is not extreme. This is a contradiction.
(⇐) Let S1, S2 ∈ Ls(2Rn‖·‖) be such that ‖Sl‖ = 1 for l = 1, 2 and T =

1
2 (S1 + S2).

Claim: T = Sl for l = 1, 2.

Since ‖Sl‖ = 1 for l = 1, 2, by Theorem 2.1(a),

|X(ik,jk) · Sl| ≤ 1 for all k = 1, . . . , n(n+ 1)/2.

Let M be the n(n+1)
2 × n(n+1)

2 -matrix such that the k-th row of M equals to

X(ik,jk) for k = 1, . . . , n(n+ 1)/2. Notice that M is an invertible n(n+1)
2 ×

n(n+1)
2 -matrix because rows vectors of M are linearly independent. Since

MT = 1
2 (MS1 + MS2), X(ik,jk) · T (which is the k-th component of MT )

equals to the middle point of the k-th components of MS1 and MS2. Hence,

X(ik,jk) · T =
1

2
(X(ik,jk) · S1 +X(ik,jk) · S2) for all k = 1, . . . , n(n+ 1)/2.

Since
|X(ik,jk) · T | = 1 for all k = 1, . . . , n(n+ 1)/2,

we have

X(ik,jk) · T = X(ik,jk) · Sl for all k = 1, . . . , n(n+ 1)/2 and l = 1, 2.

Hence, MT = MSl for l = 1, 2. Since M is invertible, T = Sl for l = 1, 2.
Therefore, T is extreme. �

Using Theorem 2.2, we completely describe extBLs(2Rn
‖·‖)

.

Theorem 2.3. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Then

extBLs(2Rn
‖·‖)

=
{
M−1(c1, . . . , cn(n+1)/2)t ∈ SLs(2Rn

‖·‖)
: ck = ±1, M is

the invertible n(n+ 1)/2× n(n+ 1)/2-matrix such that

the k-the row of M equals to X(ik,jk) for (ik, jk) ∈ Γ

and k = 1, . . . , n(n+ 1)/2
}
.
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Proof. (⊆) Let T ∈ extBLs(2Rn
‖·‖)

. By Theorem 2.2, there are n(n+1)
2 linearly

independent vectors

X(i1,j1), . . . , X(in(n+1)/2, jn(n+1)/2) ∈ R
n(n+1)

2

for some (i1, j1), . . . , (in(n+1)/2, jn(n+1)/2) ∈ Γ. Let ck = X(ik,jk) · T for 1 ≤
k ≤ n(n+ 1)/2. By Theorem 2.2, |ck| = 1 for all k = 1, . . . , n(n+ 1)/2. Notice
that

T = M−1(c1, . . . , cn(n+1)/2)t.

(⊇) Let L := M−1(c1, . . . , cn(n+1)/2)t ∈ SLs(2Rn
‖·‖)

such that ck = ±1 and M

is the invertible n(n+ 1)/2× n(n+ 1)/2-matrix such that the k-the row of M
equals to X(ik,jk) for (ik, jk) ∈ Γ and k = 1, . . . , n(n+ 1)/2. It follows that

ML = M(M−1(c1, . . . , cn(n+1)/2)t) = (c1, . . . , cn(n+1)/2)t,

which shows that

|X(ik,jk) · L| = |ck| = 1 for all k = 1, . . . , n(n+ 1)/2.

By Theorem 2.2, L ∈ extBLs(2Rn
‖·‖)

. �

Kim [23] showed the following theorem:

Theorem 2.4. Let E be a real Banach space such that extBE is finite. Suppose
that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) = 1 = ‖f‖ and
|f(y)| < 1 for every y ∈ extBE\{±x}. Then x ∈ expBE.

Using Theorem 2.4, we show that every extreme point of BLs(2Rn
‖·‖)

is ex-

posed.

Theorem 2.5. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Then the equality expBLs(2Rn
‖·‖)

= extBLs(2Rn
‖·‖)

holds.

Proof. Let T ∈ extBLs(2Rn
‖·‖)

. By Theorem 2.2, there are

(i1, j1), . . . , (in(n+1)/2, jn(n+1)/2) ∈ Γ

such that X(i1,j1), . . . , X(in(n+1)/2, jn(n+1)/2) are linearly independent in R
n(n+1)

2

and |X(ik,jk) · T | = |T (Uik , Ujk)| = 1 for all k = 1, . . . , n(n+ 1)/2. Let M be

the invertible n(n+1)
2 × n(n+1)

2 -matrix such that the k-th row of M equals to

X(ik,jk) for k = 1, . . . , n(n+ 1)/2. Let f ∈ Ls(2Rn‖·‖)
∗ be such that

f =
2

n(n+ 1)

n(n+1)
2∑

k=1

sign(T (Uik , Ujk))δ(Uik
,Ujk

),

where δ(Ui,Uj)(S) := S(Ui, Uj) for S ∈ Ls(2Rn‖·‖). Then 1 = ‖f‖ = f(T ).

Let S ∈ extBLs(2Rn
‖·‖)

be such that |f(S)| = 1. We will show that S = T or
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S = −T . It follows that

1 = |f(S)| =
∣∣∣ 2

n(n+ 1)

n(n+1)
2∑

k=1

sign(T (Uik , Ujk))S(Uik , Ujk)
∣∣∣

≤ 2

n(n+ 1)

n(n+1)
2∑

k=1

|S(Uik , Ujk)| ≤ 1,

which shows that

S(Uik , Ujk) = sign(T (Uik , Ujk)) for k = 1, . . . , n(n+ 1)/2

or
S(Uik , Ujk) = −sign(T (Uik , Ujk)) for k = 1, . . . , n(n+ 1)/2.

Suppose that

S(Uik , Ujk) = −sign(T (Uik , Ujk)) for k = 1, . . . , n(n+ 1)/2.

Since |S(Uik , Ujk)| = 1 = |T (Uik , Ujk)| for all k = 1, . . . , n(n+ 1)/2,

S(Uik , Ujk) = −T (Uik , Ujk) for all k = 1, . . . , n(n+ 1)/2.

It follows that for all k = 1, . . . , n(n+ 1)/2,

X(ik,jk) · S = S(Uik , Ujk) = −T (Uik , Ujk) = −X(ik,jk) · T,
which shows that MS = −MT . Since M is invertible, S = −T . Notice that
if S(Uik , Ujk) = sign(T (Uik , Ujk)) for k = 1, . . . , n(n+ 1)/2, then S = T . By
Theorem 2.4, T is exposed. �

Kim [18, 23, 28, 29, 35, 38, 40, 41] showed that if n ≥ 2, 0 < w < 1 and
X = ln∞,R2

∗(w),R
2
h(w) or Ls(2l2∞), then expBLs(2X) = extBLs(2X).

Using Theorem 2.5, we obtain the following:

Corollary 2.6. Let n ≥ 2, 0 < w < 1 and X = ln∞,R2
∗(w),R

2
h(w) or Ls(2l2∞).

Then the equality expBLs(2X) = extBLs(2X) holds.

3. Extreme and exposed points of L(2Rn
‖·‖)

Let n ≥ 2 and Rn‖·‖ = Rn with a norm ‖ · ‖ such that BRn
‖·‖

has finitely

many extreme points more than 2n. Let extBRn
‖·‖

= {±U1, . . . ,±Um} for some

m ≥ n and Ui 6= Uj for 1 ≤ i 6= j ≤ m. Notice that {xlys : 1 ≤ l, s ≤ n}
is a basis for L(2Rn‖·‖). Hence, dim(L(2Rn‖·‖)) = n2. By Mazur’s theorem,

BL(2Rn
‖·‖)

is compact and convex. By the Krein-Milman theorem, extBL(2Rn
‖·‖)

is nonempty.
Let T ∈ L(2Rn‖·‖). Then

T
(

(x1, . . . , xn), (y1, . . . , yn)
)

=
∑

1≤l,s≤n

alsxlys

for some als ∈ R.
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For simplicity, we denote

T =
(
a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann

)t
∈ Rn

2

.

For j = 1, . . . ,m, we let Uj =
∑

1≤k≤n λ
(j)
k ek for some λ

(j)
k ∈ R.

It follows that for 1 ≤ i ≤ j ≤ m,

T (Ui, Uj) = T
( ∑

1≤k≤n

λ
(i)
k ek,

∑
1≤k≤n

λ
(j)
k ek

)
=

∑
1≤k1,k2≤n

λ
(i)
k1
λ
(j)
k2

T (ek1 , ek2)

=
∑

1≤k1,k2≤n

λ
(i)
k1
λ
(j)
k2
ak1k2 = Y(i,j) · T,

where Y(i,j) =
(
λ
(i)
1 λ

(j)
1 , . . ., λ

(i)
1 λ

(j)
n , λ

(i)
2 λ

(j)
1 , . . ., λ

(i)
2 λ

(j)
n , . . ., λ

(i)
n λ

(j)
1 , . . .,

λ
(i)
n λ

(j)
n

)
∈ Rn2

and Y(i,j) · T denotes the dot product of Y(i,j) and T on Rn2

.

Let Λ := {(i, j) : 1 ≤ i, j ≤ m}. Then |Λ| = m2 ≥ n2. Notice that
there are at most n2 linearly independent vectors in {Y(i,j) : (i, j) ∈ Λ} since

{Y(i,j) : (i, j) ∈ Λ} ⊆ Rn2

.
In this section we characterize extBL(2Rn

‖·‖)
and expBL(2Rn

‖·‖)
, which expand

some results of [25,35,38,39,43]. First, we present an explicit formulae for the
norm of T ∈ L(2Rn‖·‖).

Theorem 3.1. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2.
(a) If T ∈ L(2Rn‖·‖), then

‖T‖ = sup
1≤i,j≤m

|T (Ui, Uj)| = sup
1≤k≤m2

|Y(ik,jk) · T |.

(b) If c(i,j) ∈ R for (i, j) ∈ Λ, then there is a unique S ∈ L(2Rn‖·‖) such that

S(Ui, Uj) = c(i,j) for all (i, j) ∈ Λ.

Proof. It follows from the Krein-Milman theorem and bilinearity of T . �

We are in position to prove the main result in this section.

Theorem 3.2. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Let T ∈ L(2Rn‖·‖) with ‖T‖ = 1. Then T ∈ extBL(2Rn
‖·‖)

if

and only if there are n2 linearly independent vectors Y(i1,j1), . . . , Y(in2 , jn2 ) in

Rn2

for some (i1, j1), . . . , (in2 , jn2) ∈ Λ such that |Y(ik,jk) · T | = 1 for all k =

1, . . . , n2.

Proof. (⇒) Suppose that T is extreme.
By similar arguments as in Theorems 2.2 and 3.1(b), there are n2 linearly in-

dependent vectors Y(i1,j1), . . . , Y(in2 , jn2 ) in Rn2

for some (i1, j1), . . . , (in2 , jn2)

∈ Λ such that |Y(ik,jk) · T | = 1 for all k = 1, . . . , n2.
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(⇐) Let S1, S2 ∈ L(2Rn‖·‖) be such that ‖Sl‖ = 1 for l = 1, 2 and T =
1
2 (S1 + S2).

Claim: T = Sl for l = 1, 2.

Since ‖Sl‖ = 1 for l = 1, 2, by Theorem 3.1(a), |Y(ik,jk) · Sl| ≤ 1 for all k =

1, . . . , n2. Let M1 be the n2 × n2-matrix such that the k-th row of M1 equals
to Y(ik,jk) for k = 1, . . . , n2. Notice that M1 is an invertible n2 × n2-matrix
because rows vectors of M1 are linearly independent. By similar arguments as
in Theorem 2.2, M1T = M1Sl for l = 1, 2. Since M1 is invertible, T = Sl for
l = 1, 2. Therefore, T is extreme. �

Using Theorem 3.2, we completely describe extBL(2Rn
‖·‖)

.

Theorem 3.3. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Then

extBL(2Rn
‖·‖)

=
{
M−1(b1, . . . , bn2)t ∈ SL(2Rn

‖·‖)
: bk = ±1, M is

the invertible n2 × n2-matrix such that the k-the row of M

equals to Y(ik,jk) for (ik, jk) ∈ Λ and k = 1, . . . , n2
}
.

Proof. By similar arguments as in Theorems 2.3 and 3.2, it follows. �

Using Theorem 3.3, we show that every extreme point ofBL(2Rn
‖·‖)

is exposed.

Theorem 3.4. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Then expBL(2Rn
‖·‖)

= extBL(2Rn
‖·‖)

.

Proof. Let T ∈ extBL(2Rn
‖·‖)

. By Theorem 3.2, there are

(i1, j1), . . . , (in2 , jn2) ∈ Λ

such that Y(i1,j1), . . . , Y(in2 , jn2 ) are linearly independent in Rn2

and |Y(ik,jk) ·
T | = |T (Uik , Ujk)| = 1 for all k = 1, . . . , n2. Let M1 be the invertible n2 × n2-
matrix such that the k-th row of M1 equals to Y(ik,jk) for k = 1, . . . , n2. Let

f ∈ L(2Rn‖·‖)
∗ be such that

f =
1

n2

n2∑
k=1

sign(T (Uik , Ujk))δ(Uik
,Ujk

).

Then 1 = ‖f‖ = f(T ). Let S ∈ extBL(2Rn
‖·‖)

be such that |f(S)| = 1. By

similar arguments as in Theorem 2.5, S = T or S = −T . By Theorem 2.4, T
is exposed. �

Kim [25, 35, 38, 39] showed that if n ≥ 2, 0 < w < 1 and X = ln∞ or R2
∗(w),

then expBL(2X) = extBL(2X).
Using Theorem 3.4, we obtain the following:
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Corollary 3.5. Let n ≥ 2, 0 < w < 1 and X = ln∞,R2
∗(w),R

2
h(w) or L(2l2∞).

Then the equality expBL(2X) = extBL(2X) holds.

The following theorem shows a relation between the spaces Ls(2Rn‖·‖) and

L(2Rn‖·‖).

Theorem 3.6. Let n ≥ 2 and let Rn‖·‖ = Rn with the norm ‖ · ‖ be the same

as in Theorem 2.2. Then the following equalities hold:
(a) extBLs(2Rn

‖·‖)
= extBL(2Rn

‖·‖)
∩ Ls(2Rn‖·‖).

(b) expBLs(2Rn
‖·‖)

= expBL(2Rn
‖·‖)
∩ Ls(2Rn‖·‖).

Proof. (a) It follows from Theorems 2.2 and 3.2.
(b) It follows from Theorems 2.5, 3.4 and (a). �
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