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Abstract. First we present the explicit formula for the norm of a symmetric bilinear

form on the 2-dimensional real predual of the Lorentz sequence space d∗(1, w)2. Using

this formula, we classify the extreme points of the unit ball of Ls(
2d∗(1, w)2)

1. Introduction

Let n ∈ N. We write BE and SE for the closed unit ball and sphere of a real
Banach space E respectively and the dual space of E is denoted by E∗. A unit
vector x in E is called an extreme point of BE if y, z ∈ BE with x = 1

2 (y + z)
implies x = y = z. We denote by extBE the sets of all the extreme points of BE .
We denote by Ls(

nE) the Banach space of all continuous symmetric n-linear forms
on E endowed with the norm ∥T∥ = sup∥xk∥=1,1≤k≤n |T (x1, · · · , xn)|. A mapping
P : E → R is a continuous n-homogeneous polynomial if there exists T ∈ Ls(

nE)
such that P (x) = T (x, · · · , x) for every x ∈ E. We denote by P(nE) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed with
the norm ∥P∥ = sup∥x∥=1 |P (x)|. For more details about the theory of multilinear
mappings and polynomials on a Banach space, we refer to [7]. We will denote by
T ((x1, y1), (x2, y2)) = ax1x2+by1y2+c(x1y2+x2y1) and P (x, y) = ax2+by2+cxy
a symmetric bilinear form and a 2-homogeneous polynomial on a real Banach space
of dimension 2 respectively.

Since 1998, many authors have been developing the problem of characterizing
extreme points of the unit balls of P(nE) for some classical real Banach spaces.
Choi, Ki and the author [2, Theorem 2.4] showed that a sufficient and necessary
condition on the coefficients a, b and c for P (x, y) defined on the real space l21 to
have norm 1, is,

(i) (|a| = 1 or |b| = 1) and |c| ≤ 2
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or
(ii) |a| < 1, |b| < 1, 2 < |c| ≤ 4 and 4|c| − c2 = 4(|a+ b| − ab).
It was also proved in [2, Theorem 2.6] that P ∈ extBP(2l21)

if and only if

(|a| = |b| = 1, |c| = 2) or a = −b, 2 < |c| ≤ 4, 4a2 = 4|c| − c2.

Choi and the author [3, Theorem 2.2] showed that P ∈ extBP(2l22)
if and only if

(|a| = |b| = 1, |c| = 0) or a = −b, 0 < |c| ≤ 2, 4a2 = 4− c2.

Later, B. Grecu [9] classified the sets extBP(2l2p)
for 1 < p < 2 or 2 < p < ∞. We

denote the 2-dimensional real predual of the Lorentz sequence space with a positive
weight 0 < w < 1 by

d∗(1, w)
2 := {(x, y) ∈ R2 : ∥(x, y)∥d∗ := max{|x|, |y|, |x|+ |y|

1 + w
}.

Very recently, the author [13] characterize the extreme points of the unit ball
of P(2d∗(1, w)

2). In fact, we show that the extreme points of the unit ball of
P(2d∗(1, w)

2) are

± x2, ± y2, ± 1

1 + w2
(x2 + y2),± 1

(1 + w)2
(x2 + y2 ± 2xy),

± {ax2 − ay2 ± 2
√
a(1− a)xy }(∀ 1

1 + w2
≤ a ≤ 1),

± [ax2 − ay2 ± { 2

(1 + w)2
+ 2

√
1

(1 + w)4
− a2 }xy](∀ 0 ≤ a ≤ 1− w

(1 + w)(1 + w2)
).

Notice that P(nE) and Ls(
nE) are not isometric in general. It is natural to ask the

following question: what are extreme points of the unit ball of Ls(
nE)?

In 2009, the author [12] started the study of characterizing extreme points of the
unit balls of Ls(

nE) and classified the extreme points of the unit ball of Ls(
2l2∞).

We refer to ([1–6, 8–18] and references therein) for some recent work about extremal
properties of multilinear mappings and homogeneous polynomials on some classical
Banach spaces.

Continuing the problem of characterizing extreme points of the unit balls of
Ls(

nE), in this paper, we focus on the space Ls(
2d∗(1, w)

2). First we present the
explicit formula for the norm of a symmetric bilinear form in Ls(

2d∗(1, w)
2). Using

this formula, we can classify the extreme points of the unit ball of Ls(
2d∗(1, w)

2)
by the method of step by step.
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2. Main Results

Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈ Ls(
2d∗(1, w)

2)
for some reals a, b, c. For simplicity we will write T ((x1, y1), (x2, y2)) =
(a, b, c, c). By substituting ((x1, y1), (x2, y2)) in T for ((x1, y1), (−x2,−y2)) or
((x1,−y1), (x2,−y2)) or ((y1, x1), (y2, x2)), we may assume that |b| ≤ a, c ≥ 0.

Theorem 2.1. Let T ((x1, y1), (x2, y2)) := (a, b, c, c) ∈ Ls(
2d∗(1, w)

2) with
|b| ≤ a, c ≥ 0. Then

∥T∥ = max{bw2 + 2cw + a, a− bw2, (a+ b)w + c(1 +w2), (a− b)w + c(1−w2)}.

In fact, we have the following:
Case 1: b ≥ 0
Subcase 1: c > a

If w ≤ c−a
c−b , then ∥T∥ = (a+ b)w + c(1 + w2).

If w > c−a
c−b , then ∥T∥ = bw2 + 2cw + a.

Subcase 2: If c ≤ a, ∥T∥ = bw2 + 2cw + a.
Case 2: b < 0
Subcase 1: c < |b|

If w ≤ c
|b| , then ∥T∥ = max{bw2 + 2cw + a, (a− b)w + c(1− w2)}.

If w > c
|b| , then ∥T∥ = max{a− bw2, (a− b)w + c(1− w2)}.

Subcase 2: c ≥ |b|
If w ≤ |b|

c , then ∥T∥ = max{bw2 + 2cw + a, (a− b)w + c(1− w2)}.
If w > |b|

c , then ∥T∥ = max{bw2 + 2cw + a, (a+ b)w + c(1 + w2)}.

Proof. Since {(±1, ± w), (±w, ± 1)} is the set of all extreme points of the unit
ball of d∗(1, w)

2 and T is bilinear,

∥T∥ = max{|T ((±1, ± w), (±1, ± w))|, |T ((±1, ± w), (±w, ± 1))|,
|T ((±w, ± 1), (±w, ± 1))|}.

It follows that, by symmetry of T ,

∥T∥ =max{|T ((1, w), (1, w))|, |T ((1, w), (1, − w))|, |T ((1, − w), (1, − w))|,
|T ((1, w), (w, 1))|, |T ((1, w), (w, − 1))|, |T ((1, − w), (w, 1))|,
|T ((1, − w), (w, − 1))|, |T ((w, 1), (w, 1))|, |T ((w, 1), (w, − 1))|,
|T ((w, − 1), (w, − 1))|}

=max{bw2 + 2cw + a, a− bw2, (a+ b)w + c(1 + w2), (a− b)w + c(1− w2)}.
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By Theorem 2.1, if ∥T∥ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1
1+w2 .

Lemma 2.2. Let T ((x1, y1), (x2, y2)) = (a, b, c, c) ∈ Ls(
2d∗(1, w)

2). Then the
following are equivalent:

(a) (a, b, c, c) is extreme.
(b) (−a,−b,−c,−c) is extreme.
(c) (a, b,−c,−c) is extreme.
(d) (b, a, c, c) is extreme.

Proof. Let S((x1, y1), (x2, y2)) := T ((u1, v1), (u2, v2)) for some ((u1, v1), (u2, v2)) =
((x1, y1), (−x2,−y2)) or ((x1,−y1), (x2,−y2)) or ((y1, x1), (y2, x2)). Then S ∈
Ls(

2d∗(1, w)
2) and T is extreme if and only if S is extreme. �

Using Theorem 2.1 and Lemma 2.2 we classify the extreme symmetric bilinear
forms of the unit ball of Ls(

2d∗(1, w)
2).

Theorem 2.3. Let T ((x1, y1), (x2, y2)) = (a, b, c, c) ∈ Ls(
2d∗(1, w)

2). Then:
(a) Let w <

√
2− 1. Then (a, b, c, c) is extreme if and only if

(a, b,c, c) ∈ {±(1, 0, 0, 0),±(0, 1, 0, 0),± 1

1 + w2
(1, 1, 0, 0),

± 1

(1 + w)2
(1, 1,±1,±1),± 1

1 + w2
(1,−1,±w,±w),± 1

1 + w2
(w,−w,±1,±1),

± 1

1 + 2w − w2
(1,−1,±1,±1),± 1

(1 + w)2(1− w)
(1− w − w2,−w,±1,±1),

± 1

(1 + w)2(1− w)
(w,−(1− w − w2),±1,±1)}.

(b) Let w =
√
2− 1. Then (a, b, c, c) is extreme if and only if

(a, b, c, c) ∈ {±(1, 0, 0, 0),±(0, 1, 0, 0),±2 +
√
2

4
(1, 1, 0, 0),±1

2
(1, 1,±1,±1),

±
√
2

4
(1,−1,±(

√
2 + 1),±(

√
2 + 1)),±

√
2

4
(
√
2 + 1,−(

√
2 + 1),±1,±1)}.

(c) Let w >
√
2− 1. Then (a, b, c, c) is extreme if and only if

(a, b, c, c) ∈ {±(1, 0, 0, 0),±(0, 1, 0, 0),± 1

1 + w2
(1, 1, 0, 0),

± 1

(1 + w)2
(1, 1,±1,±1),± 1

1 + 2w − w2
(1,−1,±1,±1),

± 1

1 + w2
(1,−1,±1− w

1 + w
,±1− w

1 + w
),± 1

1 + w2
(
1− w

1 + w
,−1− w

1 + w
,±1,±1),

± 1

2 + 2w
(2 + w,− 1

w
,±1,±1),± 1

2 + 2w
(
1

w
,−(2 + w),±1,±1)}.
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Proof. Suppose T is extreme. By Lemma 2.2, without loss of generality, we may
assume that |b| ≤ a, c ≥ 0. We will find out T by considering and checking all the
cases of a, b, c in the statements of Theorem 2.1.

Case 1: b ≥ 0
We will show that if b ≥ 0, then 0 ≤ c ≤ a. Assume c > a ≥ 0. Then

(c > a = b ≥ 0) or (c > a > b ≥ 0, w < c−a
c−b ) or (c > a > b ≥ 0, w > c−a

c−b ) or

(c > a > b ≥ 0, w = c−a
c−b ).

If c > a = b, then 1 = ∥T∥ = 2aw + c(1 + w2). If c > a = b = 0, let 0 <
ϵ < min{ w

1+w2 ,
1−w

(1+w)(1+w2)} and R = (ϵ,−ϵ, 1
1+w2 ,

1
1+w2 ), S = (−ϵ, ϵ, 1

1+w2 ,
1

1+w2 ).

Then ∥R∥ = 1 = ∥S∥, T = 1
2 (R + S), which is impossible because T is extreme.

If c > a = b > 0, let ϵ > 0 such that 0 < a − ϵ < a + ϵ < c, w < c−a−ϵ
c−a+ϵ and

R = T + (ϵ,−ϵ, 0, 0), S = T − (ϵ,−ϵ, 0, 0). Then ∥R∥ = 1 = ∥S∥, T = 1
2 (R + S),

which is impossible.
If c > a > b > 0, w < c−a

c−b , let ϵ > 0 such that

0 < b− ϵ < b+ ϵ < a− ϵ < a+ ϵ < c, w <
c− a− ϵ

c− b+ ϵ
.

Let R = T + ϵ(1,−1, 0, 0), S = T − ϵ(1,−1, 0, 0). By Theorem 2.1, ∥R∥ = 1 =
∥S∥, T = 1

2 (R+ S), which is impossible.
If c > a > b = 0, w < c−a

c−b , let ϵ > 0 such that

0 < a− ϵ < a+ ϵ < c− w

1 + w2
ϵ, w <

c− a− 1+w+w2

1+w2 ϵ

c+ w
1+w2 ϵ

.

Let R = T + ϵ(1, 0,− w
1+w2 ,− w

1+w2 ), S = T − ϵ(1, 0,− w
1+w2 ,− w

1+w2 ). Then ∥R∥ =

1 = ∥S∥, T = 1
2 (R+ S), which is impossible.

If c > a > b > 0, w > c−a
c−b , let ϵ > 0 such that

0 < b− 1

w2
ϵ < b+

1

w2
ϵ < a− ϵ < a+ ϵ < c− 1

w
ϵ, w >

c− a+ ( 1
w + 1)ϵ

c− b− ( 1
w + 1

w2 )ϵ
.

Let R = T+ϵ(1, 1
w2 ,− 1

w ,− 1
w ), S = T−ϵ(1, 1

w2 ,− 1
w ,− 1

w ). Then ∥R∥ = 1 = ∥S∥, T =
1
2 (R+ S), which is impossible. If c > a > b = 0, w > c−a

c−b , let ϵ > 0 such that

0 < a− ϵ < a+ ϵ < c− 1

2w
ϵ, w >

c− a+ ( 1
2w + 1)ϵ

c− 1
2w ϵ

.

Let R = T + ϵ(1, 0,− 1
2w ,− 1

2w ), S = T − ϵ(1, 0,− 1
2w ,− 1

2w ). Then ∥R∥ = 1 =
∥S∥, T = 1

2 (R+ S), which is impossible.
If c > a > b,w = c−a

c−b , then T = (a, 1
w2 a + w−1

w2(1+w) ,−
1
wa + 1

w(1+w) ,−
1
wa +

1
w(1+w) ) with

1−w
1+w ≤ a < 1

(1+w)2 . If a = 1−w
1+w , then T = 1

1+w (1 − w, 0, 1, 1). There
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exists ϵ > 0 such that ∥R∥ = 1 = ∥S∥, where R = T + ϵ(1, 1
w2 ,− 1

w ,− 1
w ), S =

T − ϵ(1, 1
w2 ,− 1

w ,− 1
w ), which is impossible. If 1−w

1+w < a < 1
(1+w)2 , let a1, a2 ∈ R

such that 1−w
1+w < a1 < a < a2 < 1

(1+w)2 , a = 1
2 (a1 + a2). Define R = (a1,

1
w2 a1 +

w−1
w2(1+w) ,−

1
wa1 +

1
w(1+w) ,−

1
wa1 +

1
w(1+w) ) and S = (a2,

1
w2 a2 +

w−1
w2(1+w) ,−

1
wa2 +

1
w(1+w) ,−

1
wa2 + 1

w(1+w) ). Then ∥R∥ = 1 = ∥S∥, T = 1
2 (R + S), which is impos-

sible. Therefore, if b ≥ 0, then 0 ≤ c ≤ a. In this case we will show that
T = 1

1+w2 (1, 1, 0, 0) or (1, 0, 0, 0) or 1
(1+w)2 (1, 1, 1, 1). Suppose that b ≥ 0 and

0 ≤ c ≤ a. Then (b ≥ 0, 0 ≤ c < a) or (b ≥ 0, 0 ≤ c = a), which are divided into
nine cases; (c = 0, 0 < b < a) or (c = 0, 0 < b = a) or (c = 0, 0 = b < a) or
(0 < c < a, 0 < b < a) or (0 < c < a, 0 < b = a) or (0 < c < a, 0 = b < a) or
(c = 0, 0 < b < a) or (c = 0, 0 < b = a) or (c = 0, 0 = b < a).

If c = 0 and 0 < b < a, let ϵ > 0 such that

0 < b− 1

w2
ϵ < b+

1

w2
ϵ < a− ϵ < a+ ϵ < 1.

Let R = T + ϵ(1,− 1
w2 , 0, 0), S = T − ϵ(1,− 1

w2 , 0, 0). Then ∥R∥ = 1 = ∥S∥, T =
1
2 (R + S), which is impossible. If c = 0, 0 < b = a, then T = 1

1+w2 (1, 1, 0, 0). We
will show that T is extreme. Let R = T+(ϵ, γ, δ, δ), S = T−(ϵ, γ, δ, δ) for some ϵ ≥
0, γ, δ ∈ R with ∥R∥ = 1 = ∥S∥. Since 1 ≥ |R((1, w), (1, w))| and 1 ≥
|S((1, w), (1, w))|, ϵ + w2γ + 2wδ = 0. Since 1 ≥ |R((w, 1), (w, 1))| and 1 ≥
|S((w, 1), (w, 1))|, w2ϵ+ γ + 2wδ = 0. Hence, γ = ϵ. Since 1 ≥ |R(1,−w), (1,−w))|
and 1 ≥ |S((1,−w), (1,−w))|, ϵ + w2γ − 2wδ = 0, which shows that ϵ = 0 =
γ = δ. If c = 0 and 0 = b < a, then T = (1, 0, 0, 0) is extreme. Indeed, let
R = T +(ϵ, γ, δ, δ), S = T − (ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈ R with ∥R∥ = 1 = ∥S∥.
Since

1 ≥ |R((1, 0), (1, 0))| = 1 + ϵ,

ϵ = 0. Since 1 ≥ |R((1,±w), (1,±w))| and 1 ≥ |S((1,±w), (1,±w))|, γ = 0 = δ.
If 0 < c < a and 0 < b < a, let ϵ > 0 such that

0 < b− 1

w2
ϵ < b+

1

w2
ϵ < a− ϵ, 0 < c− 1

w
ϵ < c+

1

w
ϵ < a− ϵ < a+ ϵ < 1.

Let R = T+ϵ(1, 1
w2 ,− 1

w ,− 1
w ), S = T−ϵ(1, 1

w2 ,− 1
w ,− 1

w ). Then ∥R∥ = 1 = ∥S∥, T =
1
2 (R+ S), which is impossible.

If 0 < c < a = b and 0 < b < a, then

T = (a, a,
1− a(1 + w2)

2w
,
1− a(1 + w2)

2w
) for

1

(1 + w)2
< a <

1

1 + w2
.

Let a1, a2 ∈ R such that 1
(1+w)2 < a1 < a < a2 < 1

1+w2 , a = a1+a2

2 . Let Ri =

(ai, ai,
1−ai(1+w2)

2w , 1−ai(1+w2)
2w ) for i = 1, 2. Then ∥Ri∥ = 1 and T = 1

2 (R1 + R2),
which is impossible.
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If 0 < c < a = b and 0 = b < a, let ϵ > 0 such that

0 < c− 1

2w
ϵ < c+

1

2w
ϵ < a− ϵ < a+ ϵ < 1.

Let R = T + ϵ(1, 0,− 1
2w ,− 1

2w ), S = T − ϵ(1, 0,− 1
2w ,− 1

2w ). Then ∥R∥ = 1 =
∥S∥, T = 1

2 (R+ S), which is impossible.
If c = a and 0 < b < a, let ϵ > 0 such that

ϵ

a− b− 1
w2 ϵ

< w, 0 < b− 1

w2
ϵ < b+

1

w2
ϵ < a− ϵ < a+ ϵ < 1.

Let R = T + ϵ(1,− 1
w2 , 0, 0), S = T − ϵ(1,− 1

w2 , 0, 0). Then ∥R∥ = 1 = ∥S∥, T =
1
2 (R+ S), which is impossible.

If c = a and 0 = b < a, then T = 1
1+2w (1, 0, 1, 1). We show that T is not

extreme. Indeed, let ϵ > 0 such that

1

1 + 2w
> max{ϵ, 1

2w
ϵ}, w >

(1 + 2w)2ϵ

2w + (1 + 2w)ϵ
.

Let R = T + ϵ(1, 0,− 1
2w ,− 1

2w ), S = T − ϵ(1, 0,− 1
2w ,− 1

2w ). Then ∥R∥ = 1 =
∥S∥, T = 1

2 (R+ S), which shows that T is not extreme.
If c = a and 0 < b = a, then T = 1

(1+w)2 (1, 1, 1, 1). We will show that T is

extreme. Let R = T + (ϵ, γ, δ, δ), S = T − (ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈ R with
∥R∥ = 1 = ∥S∥. Since 1 ≥ |R((1, w), (1, w))| and 1 ≥ |S((1, w), (1, w))|, ϵ + w2γ +
2wδ = 0. Since 1 ≥ |R((w, 1), (w, 1))| and 1 ≥ |S((w, 1), (w, 1))|, w2ϵ+γ+2wδ = 0.

Hence, γ = ϵ and δ = − 1+w2

2w ϵ. Note that 1 ≥ |S((1, w), (w, 1))| = 1 + (1−w2)2

2w ϵ,
which shows that ϵ = 0 = γ = δ.

Case 2: b < 0
Notice that 0 < a < 1 and c < |b| or c ≥ |b|. Suppose c < |b|. Then we have

5 cases; (c < |b| < a,w < c
|b| ) or (c < |b| < a,w > c

|b| ) or (c < |b| < a,w = c
|b| ) or

(c < |b| = a,w ≤ c
|b| ) or (c < |b| = a,w > c

|b| ).

If c < |b| < a,w < c
|b| , we can find ϵ > 0 such that

c+
1 + w2

3w − w3
ϵ < |b| − |1− 3w2|

3w2 − w4
ϵ < |b|+ |1− 3w2|

3w2 − w4
ϵ < a− ϵ,

b+
|1− 3w2|
3w2 − w4

ϵ < 0, w <
c− 1+w2

3w−w3 ϵ

|b|+ |1−3w2|
3w2−w4 ϵ

.

Let R = T + ϵ(1, 1−3w2

w4−3w2 ,
1+w2

w3−3w , 1+w2

w3−3w ) and S = T − ϵ(1, 1−3w2

w4−3w2 ,
1+w2

w3−3w , 1+w2

w3−3w ).

Then ∥R∥ = 1 = ∥S∥, T = 1
2 (R+ S), which is impossible.
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If c < |b| < a,w > c
|b| , we can find ϵ > 0 such that

c+
1

w
ϵ < |b| − 1

w2
ϵ < |b|+ 1

w2
ϵ < a− ϵ, b+

1

w2
ϵ < 0, w >

c+ 1
w ϵ

|b| − 1
w2 ϵ

.

Let R = T + ϵ(1, 1
w2 ,

1
w , 1

w ) and S = T − ϵ(1, 1
w2 ,

1
w , 1

w ). Then ∥R∥ = 1 = ∥S∥, T =
1
2 (R+ S), which is impossible.

If c < |b| < a,w = c
|b| , then T = 1

2+2w (2 + w,− 1
w , 1, 1) for w >

√
2− 1. Indeed,

note that
1 = ∥T∥ = max{bw2 + 2wc+ a, (a− b)w + c(1− w2)}.

Hence, bw2 + 2wc + a = 1 = (a − b)w + c(1 − w2). Then T = 1
2+2w (2 + w,− 1

w , 1)

for w >
√
2− 1. We will show that T = 1

2+2w (2 + w,− 1
w , 1, 1) with w >

√
2− 1 is

extreme. Define R = T + (ϵ, γ, δ, δ) and S = T − (ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈ R
with ∥R∥ = 1 = ∥S∥. Then γ = 3w2−1

w2(3−w2)ϵ, δ = 1+w2

w3−3w ϵ. Since, by Theorem 2.1,

1 = ∥R∥ ≥ 1 +
4− 4w2

3− w2
ϵ,

so ϵ = 0 = γ = δ.
Suppose that c < |b| = a,w ≤ c

|b| . If a(1 − w2) + 2wc = 1 = c(1 − w2) + 2wa,

then T = 1
1+2w−w2 (1,−1, 1, 1), which is impossible since c < a. Therefore, 1 =

a(1− w2) + 2wc > c(1− w2) + 2wa or a(1− w2) + 2wc < c(1− w2) + 2wa = 1. If
1 = a(1− w2) + 2wc > c(1− w2) + 2wa, then

T = (a,−a,
1− a(1− w2)

2w
,
1− a(1− w2)

2w
)

for 1
1+w2 ≤ a < w2

(1+2w−w2)(−1+2w+w2) . If a = 1
1+w2 , then T = 1

1+w2 (1,−1, w, w)

with w <
√
2− 1 is extreme since

1 = |T ((1, w), (1, w))| = |T ((1, w), (1,−w))| = |T ((w, 1), (w,−1))|
= |T ((w,−1), (w,−1))|.

If a(1− w2) + 2wc < c(1− w2) + 2wa = 1, then

T = (a,−a,
1− 2wa

1− w2
,
1− 2wa

1− w2
) for 0 < a <

w2

1 + 2w − w2
,

which is impossible. If c < |b| = a,w > c
|b| , then a(1 + w2) = 1 = c(1− w2) + 2wa

and T = 1
1+w2 (1,−1, 1−w

1+w , 1−w
1+w ) with w ≥

√
2− 1. We will show that T is extreme

since

1 = |T ((1, w), (1,−w))| = |T ((1,−w), (w, 1))| = |T ((w, 1), (w,−1))|.
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Suppose c ≥ |b|. Then c > |b| or c = |b|. Suppose c > |b|. Then we have 9

cases; (c > a > |b|, w < |b|
c ) or (c > a > |b|, w > |b|

c ) or (c > a > |b|, w = |b|
c )

or (c > a = |b|, w < |b|
c ) or (c > a = |b|, w > |b|

c ) or (c > a = |b|, w = |b|
c ) or

(c = a > |b|) or (a > c > |b|, w > |b|
c ) or (a > c > |b|, w ≤ |b|

c ).

If c > a > |b|, w < |b|
c , we can find ϵ > 0 such that

c− 1 + w2

3w − w3
ϵ > a+ ϵ > a− ϵ > |b|+ |1− 3w2|

3w2 − w4
ϵ, w <

|b| − |1−3w2|
3w2−w4 ϵ

c+ 1+w2

3w−w3 ϵ
.

Let R = T + ϵ(1, 1−3w2

w4−3w2 ,
1+w2

w3−3w , 1+w2

w3−3w ) and S = T − ϵ(1, 1−3w2

w4−3w2 ,
1+w2

w3−3w , 1+w2

w3−3w ).

Then ∥R∥ = 1 = ∥S∥, T = 1
2 (R+ S), which is impossible.

If c > a > |b|, w > |b|
c , we can find an ϵ > 0 such that

c− 1

w
ϵ > a+ ϵ > a− ϵ > |b|+ 1

w2
ϵ, w >

|b|+ 1
w2 ϵ

c− 1
w ϵ

.

Let R = T + ϵ(1, 1
w2 ,− 1

w ,− 1
w ) and S = T − ϵ(1, 1

w2 ,− 1
w ,− 1

w ). Then ∥R∥ = 1 =

∥S∥, T = 1
2 (R+ S), which is impossible. If c > a > |b|, w = |b|

c , then

1 = −|b|w2 + 2cw + a = −cw2 + 2cw + a, 1 = (a+ |b|)w + c(1− w2) = c+ aw.

Hence, T = 1
(1+w)2(1−w) (1 − w − w2,−w, 1, 1) for w <

√
2 − 1. We will show that

T is extreme. Let R = T + (ϵ, γ, δ, δ), S = T − (ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈ R
with ∥R∥ = 1 = ∥S∥. Since 1 ≥ |R((1, w), (1, w))| and 1 ≥ |S((1, w), (1, w))|,
ϵ + w2γ + 2wδ = 0. Since 1 ≥ |R((1, w), (w, 1))| and 1 ≥ |S((1, w), (w, 1))|, wϵ +
wγ + (1 + w2)δ = 0. Since 1 ≥ |R((1,−w), (w, 1))| and 1 ≥ |S((1,−w), (w, 1))|,
wϵ− wγ + (1− w2)δ = 0, which shows that ϵ = 0 = γ = δ.

Suppose that c > |b| = a,w < |b|
c . We will show that T = 1

1+w2 (w,−w, 1, 1) for

w <
√
2−1 or T = 1

1+w2 (
1−w
1+w , −1+w

1+w , 1, 1) for w ≥
√
2−1. If 1 = a(1−w2)+2cw =

c(1− w2) + 2aw, then w =
√
2− 1 and

T = (a,−a,

√
2 + 1

2
− a,

√
2 + 1

2
− a) for

√
2

4
< a <

√
2 + 1

4
,

which is impossible. Therefore, 1 = a(1 − w2) + 2cw > c(1 − w2) + 2aw or a(1 −
w2) + 2cw < c(1−w2) + 2aw = 1. If 1 = a(1−w2) + 2cw > c(1−w2) + 2aw, then
w >

√
2− 1 and

T = (a,−a,
1− a(1− w2)

2w
,
1− a(1− w2)

2w
) for

1

3− w2
< a <

1

1 + 2w − w2
,

which is impossible. If a(1 − w2) + 2cw < c(1 − w2) + 2aw = 1, then w <
√
2 − 1

and

T = (a,−a,
1− 2aw

1− w2
,
1− 2aw

1− w2
) for

w

1 + w2
< a <

1

1 + 2w − w2
,
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which is impossible. Suppose c > |b| = a,w ≥ a
c . If w > a

c and 1 = a(1−w2)+2cw >

c(1 + w2), then w >
√
2− 1 and

T = (a,−a,
1− a(1− w2)

2w
,
1− a(1− w2)

2w
) for

1− w

(1 + w2)(1 + w)
< a <

1

3− w2
,

which is impossible. If w = a
c and 1 = a(1−w2)+2cw > c(1+w2), then w >

√
2−1

and T = ( 1
3−w2 ,− 1

3−w2 ,
1

w(3−w2) ), which is impossible since, by Theorem 2.1, we

can choose ϵ > 0 such that ∥R∥ = 1 = ∥S∥, where

R = (
1

3− w2
+ ϵ,− 1

3− w2
− ϵ,

1

w(3− w2)
− 1− w2

2w
ϵ,

1

w(3− w2)
− 1− w2

2w
ϵ)

and

S = (
1

3− w2
− ϵ,− 1

3− w2
+ ϵ,

1

w(3− w2)
+

1− w2

2w
ϵ,

1

w(3− w2)
+

1− w2

2w
ϵ).

Suppose that w > a
c and a(1− w2) + 2cw < c(1 + w2) = 1. Then w <

√
2− 1 and

T = (a,−a,
1

1 + w2
,

1

1 + w2
) for 0 < a <

w

1 + w2
,

which is impossible. If w = a
c and a(1 − w2) + 2cw < c(1 + w2) = 1, then

w <
√
2 − 1 and T = ( w

1+w2 ,− w
1+w2 ,

1
1+w2 ,

1
1+w2 ). We will show that T =

( w
1+w2 ,− w

1+w2 ,
1

1+w2 ,
1

1+w2 ) for w <
√
2−1 is extreme. Indeed, let R = T+(ϵ, γ, δ, δ)

and S = T − (ϵ, γ, δ, δ) with ∥R∥ = 1 = ∥S∥ for ϵ ≥ 0, γ, δ ∈ R. Since

1 = |T ((1, w), (w, 1))| = |T ((1,−w), (w, 1))| = |T ((1,−w), (w,−1))|,

0 = ϵw + γw + δ(1 + w2)

0 = ϵw − γw + δ(1− w2)

0 = ϵw + γw − δ(1 + w2),

which imply that 0 = ϵ = γ = δ. Suppose that w ≥ a
c and 1 = a(1 − w2) + 2cw =

c(1 + w2). Then T = 1
1+w2 (

1−w
1+w , −1+w

1+w , 1, 1) for w ≥
√
2 − 1. We will show that

T = 1
1+w2 (

1−w
1+w , −1+w

1+w , 1, 1) is extreme if and only if w ≥
√
2− 1

By Theorem 2.1, if w <
√
2−1, then ∥T∥ > 1, so T can not be extreme. Suppose

that w ≥
√
2−1. Let R = T +(ϵ, γ, δ, δ), S = T − (ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈ R

with ∥R∥ = 1 = ∥S∥. Then γ = −ϵ, δ = w2−1
2w . Since

1 ≥ ∥S∥ ≥ 1 +
1− w4

2w
ϵ,

so ϵ = 0 = γ = δ.
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If c = a > |b|, then

1 = ∥T∥ = −|b|w2 + 2cw+ a > max{(a+ |b|)w+ c(1−w2), (a− |b|)w+ c(1 +w2)}.

From it, there exists a sufficiently small ϵ > 0 such that ∥R∥ = 1 = ∥S∥, if R =
T + ϵ(1, 0,− 1

2w ,− 1
2w ) and S = T − ϵ(1, 0,− 1

2w ,− 1
2w ), which is impossible.

If a > c > |b|, w > |b|
c , then

1 = ∥T∥ = −|b|w2 + 2cw + a

> max{(a+ |b|)w + c(1− w2), (a− |b|)w + c(1 + w2), a− bw2},

which is impossible. If a > c > |b|, w ≤ |b|
c , then we claim that 1 = −|b|w2 + 2cw +

a > (a+|b|)w+c(1−w2) or 1 = (a+|b|)w+c(1−w2) > −|b|w2+2cw+a. Otherwise.

Then T = (a, 1−2w−w2

w2(3−w2) +
3w2−1

w2(3−w2)a,
1+w

w(3−w2) −
1+w2

w(3−w2)a,
1+w

w(3−w2) −
1+w2

w(3−w2)a) and
1

1+2w−w2 < a < 1
1+2w−w2 , which is impossible. Since 1 = −|b|w2 + 2cw + a >

max{(a+ |b|)w+ c(1−w2), a− bw2} or 1 = (a+ |b|)w+ c(1−w2) > max{−|b|w2 +
2cw+a, (a−|b|)w+c(1+w2)}, T is not extreme, which is a contradiction. Suppose
c = |b|. Then c = |b| < a or c = |b| = a. If |b| = c < a, then

1 = ∥T∥ = bw2 + 2cw + a = −cw2 + 2cw + a

> max{a− bw2, (a+ b)w + c(1 + w2), (a− b)w + c(1− w2)}.

We can find ϵ > 0 such that ∥R∥ = 1 = ∥S∥, where R = T + ϵ(1,− 1
w2 , 0, 0), S =

T−ϵ(1,− 1
w2 , 0, 0), which is impossible. If c = a = |b|, then T = 1

1+2w−w2 (1,−1, 1, 1)

for w ̸=
√
2− 1. We will show that T = 1

1+2w−w2 (1,−1, 1, 1) ∈ extBLs(2d∗(1,w)) for

w ̸=
√
2−1. Indeed, let R = T +(ϵ, γ, δ, δ), S = T −(ϵ, γ, δ, δ) for some ϵ ≥ 0, γ, δ ∈

R with ∥R∥ = 1 = ∥S∥. Since 1 ≥ |R((1, w), (1, w))| and 1 ≥ |S((1, w), (1, w))|,
ϵ + w2γ + 2wδ = 0. Since 1 ≥ |R((w,−1), (w,−1))| and 1 ≥ |S((w,−1), (w,−1))|,
w2ϵ + γ − 2wδ = 0. Hence, γ = −ϵ and δ = w2−1

2w ϵ. Since 1 ≥ |R((−1, w), (w, 1))|
and 1 ≥ |S((−1, w), (w, 1))|, ϵ( (1−w2)2

2w − 2w) = 0, which shows that ϵ = 0 = γ = δ.
Therefore, it completes the proof. �
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