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Abstract. Let d∗(1, w)2 = R2 with the octagonal norm of weight w. It is the two
dimensional real predual of Lorentz sequence space. In this paper we classify the smooth
points of the unit ball of the space of symmetric bilinear forms on d∗(1, w)2. We also show
that the unit sphere of the space of symmetric bilinear forms on d∗(1, w)2 is the disjoint
union of the sets of smooth points, extreme points and the set A as follows:

SLs(2d∗(1,w)2) = smBLs(2d∗(1,w)2)

⋃
extBLs(2d∗(1,w)2)

⋃
A,

where the set A consists of ax1x2 + by1y2 + c(x1y2 + x2y1) with (a = b = 0, c = ± 1
1+w2 ),

(a 6= b, ab ≥ 0, c = 0), (a = b, 0 < ac, 0 < |c| < |a|), (a 6= |c|, a = −b, 0 < ac, 0 < |c|), (a =
1−w
1+w

, b = 0, c = 1
1+w

), (a = 1+w+w(w2−3)c

1+w2 , b = w−1+(1−3w2)c

w(1+w2)
, 1
2+2w

< c < 1
(1+w)2(1−w)

, c 6=
1

1+2w−w2 ), (a = 1+w(1+w)c
1+w

, b = −1+(1+w)c
w(1+w)

, 0 < c < 1
2+2w

) or (a = 1−w(1+w)c
1+w

, b =
1−(1+w)c

1+w
, 1
1+w

< c < 1
(1+w)2(1−w)

).

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if y, z ∈ BE
with x = 1

2 (y + z) implies x = y = z. x ∈ BE is called a smooth point of BE if
there is a unique f ∈ E∗ so that f(x) = 1 = ‖f‖. We denote by extBE and smBE
the sets of extreme and smooth points of BE , respectively. A mapping P : E → R
is a continuous 2-homogeneous polynomial if there exists a continuous symmetric
bilinear form L on the product E×E such that P (x) = L(x, x) for every x ∈ E. We
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denote by Ls(
2E) the Banach space of all continuous symmetric bilinear forms on

E endowed with the norm ‖L‖ = sup‖x‖=‖y‖=1 |L(x, y)|. P(2E) denotes the Banach
space of all continuous 2-homogeneous polynomials from E into R endowed with
the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details about the theory of polynomials
on a Banach space, we refer to [7].

In 1998, Choi and the author [3] characterized the smooth points of the unit
ball of P(2l22) and in 1999, Choi and the author [5] characterized the smooth points
of the unit ball of P(2l21) and studied smooth polynomials of P(2l1). In 2009, the
author [10] classified the smooth symmetric bilinear forms of Ls(

2l2∞). We refer
to ([1], [3–6], [8–19] and references therein) for some recent work about extremal
properties of multilinear mappings and homogeneous polynomials on some classical
Banach spaces. Let 0 < w < 1 be fixed. We denote the two dimensional real predual
of Lorentz sequence space by

d∗(1, w)2 := {(x, y) ∈ R2 : ‖(x, y)‖d∗ := max{|x|, |y|, |x|+ |y|
1 + w

} }.

In fact, d∗(1, w)2 = R2 with the octagonal norm of weight w. We will denote by
T ((x1, x2), (y1, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) a symmetric bilinear form on
d∗(1, w)2. Recently, the author [12] computed the norm of T ∈ Ls(

2d∗(1, w)2) in
terms of their real coefficients and determined all the extreme symmetric bilinear
forms of the unit ball of Ls(

2d∗(1, w)2). In this paper, using results of the previous
work [12], we classify the smooth symmetric bilinear forms of the unit ball of the
space Ls(

2d∗(1, w)2). We also show that the unit sphere SLs(2d∗(1,w)2) is the disjoint
union of the sets of smooth points, extreme points and the set A as follows:

SLs(2d∗(1,w)2) = smBLs(2d∗(1,w)2)

⋃
extBLs(2d∗(1,w)2)

⋃
A,

where A consists of ax1x2 + by1y2 + c(x1y2 + x2y1) with (a = b = 0, c = ± 1
1+w2 ),

(a 6= b, ab ≥ 0, c = 0), (a = b, 0 < ac, 0 < |c| < |a|), (a 6= |c|, a = −b, 0 < ac, 0 < |c|),
(a = 1−w

1+w , b = 0, c = 1
1+w ), (a = 1+w+w(w2−3)c

1+w2 , b = w−1+(1−3w2)c
w(1+w2) , 1

2+2w < c <
1

(1+w)2(1−w) , c 6=
1

1+2w−w2 ), (a = 1+w(1+w)c
1+w , b = −1+(1+w)c

w(1+w) , 0 < c < 1
2+2w ) or (a =

1−w(1+w)c
1+w , b = 1−(1+w)c

1+w , 1
1+w < c < 1

(1+w)2(1−w) ).

2. The Results

Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈ Ls(
2d∗(1, w)2) for

some reals a, b, c. By substituting ((x1, y1), (x2, y2)) in T for ((x1, y1), (−x2,−y2))
or ((x1,−y1), (x2,−y2)) or ((y1, x1), (y2, x2)), we may assume that |b| ≤ a, c ≥ 0.

Theorem 2.1.([12, Theorem 2.1]) Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
c(x1y2 + x2y1) ∈ Ls(

2d∗(1, w)2) with |b| ≤ a, c ≥ 0. Then

‖T‖ = max{bw2 + 2cw + a, a− bw2, (a+ b)w + c(1 + w2), (a− b)w + c(1− w2)}.
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In fact, we have the following:
Case 1: b ≥ 0
Subcase 1: c > a

If w ≤ c−a
c−b , then ‖T‖ = (a+ b)w + c(1 + w2).

If w > c−a
c−b , then ‖T‖ = bw2 + 2cw + a.

Subcase 2: If c ≤ a, ‖T‖ = bw2 + 2cw + a.
Case 2: b < 0
Subcase 1: c < |b|

If w ≤ c
|b| , then ‖T‖ = max{bw2 + 2cw + a, (a− b)w + c(1− w2)}.

If w > c
|b| , then ‖T‖ = max{a− bw2, (a− b)w + c(1− w2)}.

Subcase 2: c ≥ |b|
If w ≤ |b|c , then ‖T‖ = max{bw2 + 2cw + a, (a− b)w + c(1− w2)}.
If w > |b|

c , then ‖T‖ = max{bw2 + 2cw + a, (a+ b)w + c(1 + w2)}.

By Theorem 2.1, if ‖T‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1
1+w2 .

Theorem 2.2. Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈
Ls(

2d∗(1, w)2). Then the following are equivalent:
(1) ax1x2 + by1y2 + c(x1y2 + x2y1) is a smooth point of Ls(

2d∗(1, w)2) ;
(2) −(ax1x2 + by1y2 + c(x1y2 + x2y1)) is a smooth point of Ls(

2d∗(1, w)2);
(3) ax1x2 + by1y2 − c(x1y2 + x2y1) is a smooth point of Ls(

2d∗(1, w)2);
(4) bx1x2 + ay1y2 + c(x1y2 + x2y1) is a smooth point of Ls(

2d∗(1, w)2).

Proof. Let S((x1, y1), (x2, y2)) := T ((u1, v1), (u2, v2)) for some ((u1, v1), (u2, v2)) =
((x1, y1), (−x2,−y2)) or ((x1,−y1), (x2,−y2)) or ((y1, x1), (y2, x2)). Then S ∈
Ls(

2d∗(1, w)2), and T is smooth if and only if S is smooth. 2

Theorem 2.3.([12, Theorem 2.3]) Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
c(x1y2 + x2y1) ∈ Ls(

2d∗(1, w)2). Then
(a) Let w <

√
2− 1. Then T is an extreme point of Ls(

2d∗(1, w)2) if and only if

T∈{±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],

± 1

1 + w2
[x1x2 − y1y2 ± w(x1y2 + x2y1)],± 1

1 + w2
[wx1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

(1 + w)2(1− w)
[(1− w − w2)x1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

(1 + w)2(1− w)
[wx1x2 − (1− w − w2)y1y2 ± (x1y2 + x2y1)]}.

(b) Let w =
√

2− 1. Then T is an extreme point of Ls(
2d∗(1, w)2) if and only if

T ∈ {±x1x2,±y1y2,±
2 +
√

2

4
(x1x2 + y1y2),±1

2
[x1x2 + y1y2 ± (x1y2 + x2y1)],
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±
√

2

4
[x1x2 + y1y2 ± (

√
2 + 1)(x1y2 + x2y1)],

±
√

2

4
[(
√

2 + 1)(x1y2 − x2y1)± (x1y2 + x2y1)]}.

(c) Let w >
√

2− 1. Then T is an extreme point of Ls(
2d∗(1, w)2) if and only if

T ∈ {±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],

± 1

1 + w2
[x1x2 − y1y2 ±

1− w
1 + w

(x1y2 + x2y1)],

± 1

1 + w2
[
1− w
1 + w

(x1x2 − y1y2)± (x1y2 + x2y1)],

± 1

2 + 2w
[(2 + w)x1x2 −

1

w
y1y2 ± (x1y2 + x2y1)],

± 1

2 + 2w
[
1

w
x1x2 − (2 + w)y1y2 ± (x1y2 + x2y1)]}.

Theorem 2.4. Let f ∈ Ls(
2d∗(1, w)2)∗ and α = f(x1x2), β = f(y1y2), γ =

f(x1y2 + x2y1).
(a) Let w <

√
2− 1. Then

‖f‖ = max{|α|, |β|, 1

1 + w2
|α+ β|, 1

(1 + w)2
(|α+ β|+ |γ|),

1

1 + 2w − w2
(|α− β|+ |γ|), 1

1 + w2
(|α− β|+ w|γ|),

1

1 + w2
(w|α− β|+ |γ|), 1

(1 + w)2(1− w)
(|(1− w − w2)α− wβ|+ |γ|),

1

(1 + w)2(1− w)
(|wα− (1− w − w2)β|+ |γ|)}.

(b) Let w =
√

2− 1. Then

‖f‖ = max{|α|, |β|, 2 +
√

2

4
|α+ β|, 1

2
(|α+ β|+ |γ|),

√
2

4
(|α− β|+ (

√
2 + 1)|γ|),

√
2

4
((
√

2 + 1)|α− β|+ |γ|)}.

(c) Let
√

2− 1 < w. Then

‖f‖ = max{|α|, |β|, 1

1 + w2
|α+ β|, 1

(1 + w)2
(|α+ β|+ |γ|),

1

1 + 2w − w2
(|α− β|+ |γ|), 1

1 + w2
(|α− β|+ 1− w

1 + w
|γ|),
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1

1 + w2
(
1− w
1 + w

|α− β|+ |γ|), 1

2 + 2w
(|(2 + w)α− 1

w
β|+ |γ|),

1

2 + 2w
(| 1
w
α− (2 + w)β|+ |γ|)}.

Proof. It follows from Theorem 2.3 since

‖f‖ = sup{|f(T )| : T ∈ extBLs(2d∗(1,w)2)}. 2

Theorem 2.5. Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈
Ls(

2d∗(1, w)2) with |b| < a, c > 0. Let S = {bw2 + 2cw + a, a − bw2, (a +
b)w + c(1 + w2), (a − b)w + c(1 − w2)}. Then T ∈ smBLs(2d∗(1,w)2) if and only if
there exists a unique l ∈ S such that l = 1.

Proof. (⇒): For (u1, v1), (u2, v2) ∈ Sd∗(1,w)2 , let δ(u1,v1),(u2,v2) ∈ Ls(
2d∗(1, w)2)∗

such that δ(u1,v1),(u2,v2)(L) = L((u1, v1), (u2, v2)) for L ∈ Ls(
2d∗(1, w)2). Then

‖δ(u1,v1),(u2,v2)‖ ≤ 1.Note that, by Theorem 2.4, 1 = ‖δ(1,w),(1,w)‖ = ‖δ(1,−w),(1,w)‖ =
‖δ(1,w),(w,1)‖ = ‖δ(1,−w),(w,1)‖. Obviously,

δ(1,w),(1,w)(T ) = bw2 + 2cw + a, δ(1,−w),(1,w)(T ) = a− bw2,

δ(1,w),(w,1)(T ) = (a+ b)w + c(1 + w2), δ(1,−w),(w,1)(T ) = (a− b)w + c(1− w2).

Hence, if T ∈ smBLs(2d∗(1,w)2), then, by Theorem 2.1, there exists a unique l ∈ S
such that l = 1.

(⇐): Let f ∈ Ls(
2d∗(1, w)2)∗ such that 1 = ‖f‖ = f(T ) with α = f(x1x2), β =

f(y1y2), γ = f(x1y2 + x2y1).
Case 1: l = bw2 + 2cw + a = 1
Then

(∗) bw2 + 2cw + a = 1 = aα+ bβ + cγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + by1y2 + (c∓ 1

2wn
)(x1y2 + x2y1)‖

= ‖ax1x2 + (b± 1

n
)y1y2 + (c∓ w

2n
)(x1y2 + x2y1)‖.

From (∗∗), 1 ≥ f((a± 1
n )x1x2 + by1y2 + (c∓ 1

2wn )(x1y2 +x2y1)) = 1 + 1
n |α−

1
2wnγ|,

hence α = 1
2wγ and 1 ≥ f(ax1x2+(b± 1

n )y1y2+(c∓ w
2n )(x1y2+x2y1)) = 1+ 1

n |β−
w
2 γ|,

hence β = w
2 γ. It follows that, by (∗),

1 = aα+ bβ + cγ =
γ

2w
(bw2 + 2cw + a) =

γ

2w
.

Therefore, α = 1, β = w2, γ = 2w, hence f = δ(1,w),(1,w) is uniquely determined.
Case 2: l = a− bw2 = 1
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Then
(∗) a− bw2 = 1 = aα+ bβ + cγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + (b± 1

nw2
)y1y2 + c(x1y2 + x2y1)‖

= ‖ax1x2 + by1y2 + (c± 1

n
)(x1y2 + x2y1)‖.

From (∗∗), 1 ≥ f((a± 1
n )x1x2 + (b± 1

nw2 )y1y2 + c(x1y2 + x2y1)) = 1 + 1
n |α+ 1

w2 β|,
hence α = − 1

w2 β and 1 ≥ f(ax1x2 + by1y2 +(c± 1
n )(x1y2 +x2y1)) = 1+ 1

n |γ|, hence
γ = 0. It follows that, by (∗),

w2 = w2(aα+ bβ + cγ) = β(bw2 − a) = −β.

Therefore, α = 1, β = −w2, γ = 0, hence f = δ(1,−w),(1,w) is uniquely determined.
Case 3: l = (a+ b)w + c(1 + w2) = 1
Then

(∗) (a+ b)w + c(1 + w2) = 1 = aα+ bβ + cγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + by1y2 + (c∓ w

n(1 + w2)
)(x1y2 + x2y1)‖

= ‖ax1x2 + (b± 1

n
)y1y2 + (c∓ w

n(1 + w2)
)(x1y2 + x2y1)‖.

From (∗∗), 1 ≥ f((a± 1
n )x1x2+by1y2+(c∓ w

n(1+w2) )(x1y2+x2y1)) = 1+ 1
n |α−

w
1+w2 γ|,

hence α = w
1+w2 γ and 1 ≥ f(ax1x2 + (b± 1

n )y1y2 + (c∓ w
n(1+w2) )(x1y2 + x2y1)) =

1 + 1
n |β −

w
1+w2 γ|, hence β = w

1+w2 γ. It follows that, by (∗),

1 = aα+ bβ + cγ =
γ

1 + w2
((a+ b)w + c(1 + w2)) =

γ

1 + w2
.

Therefore, α = β = w, γ = 1 + w2, hence f = δ(1,w),(w,1) is uniquely determined.
Case 4: l = (a− b)w + c(1− w2) = 1
Then

(∗) (a− b)w + c(1− w2) = 1 = aα+ bβ + cγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + by1y2 + (c∓ w

n(1− w2)
)(x1y2 + x2y1)‖

= ‖ax1x2 + (b± 1

n
)y1y2 + (c± w

n(1− w2)
)(x1y2 + x2y1)‖.

From (∗∗), 1 ≥ f((a± 1
n )x1x2+by1y2+(c∓ w

n(1−w2) )(x1y2+x2y1)) = 1+ 1
n |α−

w
1−w2 γ|.
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Hence α = w
1−w2 γ and 1 ≥ f(ax1x2+(b± 1

n )y1y2+(c± w
n(1−w2) )(x1y2+x2y1)) =

1 + 1
n |β + w

1−w2 γ|, hence β = − w
1−w2 γ. It follows that, by (∗),

1 = aα+ bβ + cγ =
γ

1− w2
((a− b)w + c(1− w2)) =

γ

1− w2
.

Therefore, α = w, β = −w, γ = 1 − w2, hence f = δ(1,−w),(w,1) is uniquely deter-
mined. 2

We are in position to classify the smooth symmetric bilinear forms of the unit
ball of Ls(

2d∗(1, w)2).

Theorem 2.6. Let T = ax1x2 + by1y2 + c(x1y2 +x2y1) ∈ SLs(2d∗(1,w)2). Then T /∈
smBLs(2d∗(1,w)2) if and only if (|a| = 1, b = 0 = c), (a = b = 0, c = ± 1

1+w2 ), (ab ≥
0, c = 0), (a = b, 0 < ac, 0 < |c| ≤ |a|), (a = −b, 0 < ac, 0 < |c|), (a = 1−w

1+w , b =

0, c = 1
1+w ), (a = 1+w+w(w2−3)c

1+w2 , b = w−1+(1−3w2)c
w(1+w2) , 1

2+2w ≤ c ≤ 1
(1+w)2(1−w) ), (a =

1+w(1+w)c
1+w , b = −1+(1+w)c

w(1+w) , 0 < c < 1
2+2w ) or (a = 1−w(1+w)c

1+w , b = 1−(1+w)c
1+w , 1

1+w <

c < 1
(1+w)2(1−w) ).

Proof. Without loss of generality, we may assume that |b| ≤ a, c ≥ 0. Let T =
ax1x2 + by1y2 + c(x1y2 + x2y1) ∈ SLs(2d∗(1,w)2) and let f ∈ Ls(

2d∗(1, w)2)∗ such
that 1 = ‖f‖ = f(T ) with α = f(x1x2), β = f(y1y2), γ = f(x1y2 + x2y1). If a = 1,
then T = x1x2. We claim that T is not smooth. Indeed, let g, h ∈ Ls(

2d∗(1, w)2)∗

such that g(x1x2) = 1, g(y1y2) = 0, g(x1y2 + x2y1) = 0, h(x1x2) = 1, h(y1y2) =
0, h(x1y2 + x2y1) = w2. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ),
which implies that T is not smooth. If a = 0, then T = 1

1+w2 (x1y2+x2y1). We claim

that T is not smooth. Indeed, let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) = 0 =

g(y1y2), g(x1y2 + x2y1) = 1 +w2, h(x1x2) = w = h(y1y2), h(x1y2 + x2y1) = 1 +w2.
Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies that T is
not smooth. Suppose that 0 < a < 1. We will consider the three cases (c = 0) or
(a = |b|, c > 0) or (|b| < a, c > 0).

Case 1: c=0
We claim that b 6= 0 since if not, then a = 1, which is impossible. If b > 0,

let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) = 1, g(y1y2) = w2, g(x1y2 + x2y1) =

2w, h(x1x2) = 1, h(y1y2) = w2, h(x1y2 + x2y1) = 0. Theorem 2.4 shows that ‖g‖ =
1 = ‖h‖ = g(T ) = h(T ), which implies that T is not smooth. In particular,
extreme ± 1

1+w2 (x1x2 + y1y2) is not smooth. If b < 0, then T = ax1x2− |b|y1y2 and

1 = ‖T‖ = a+ bw2. We will show that T is smooth. By Theorem 2.1,

(∗) a+ bw2 = 1 = aα+ bβ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + (b± 1

nw2
)y1y2‖

= ‖ax1x2 + by1y2 ±
1

n
(x1y2 + x2y1)‖.
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From (∗∗), 1 ≥ f((a± 1
n )x1x2 + (b± 1

nw2 )y1y2) = 1 + 1
n |α+ 1

w2 β|, hence α = − 1
w2 β

and 1 ≥ f(ax1x2 + by1y2± 1
n (x1y2 +x2y1)) = 1 + 1

n |γ|, hence γ = 0. It follows that,
by (∗),

1 = aα+ bβ = − β

w2
(a− bw2) = − β

w2
.

Therefore, α = 1, β = −w2, γ = 0, hence f = δ(1,w),(1,w) is uniquely determined.
Case 2: a = |b|, c > 0
Then (a = b, c > 0) or (a = −b, c > 0). First suppose that a = b, c > 0. If

c > a, then we claim that T is smooth. By Theorem 2.1,

(∗) 2aw + c(1 + w2) = 1 = aα+ aβ + cγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 = ‖(a± 1

n
)x1x2 + (a∓ 1

n
)y1y2 + c(x1y2 + x2y1)‖

= ‖ax1x2 + (a± 1

n
)y1y2 + (c∓ w

n(1 + w2)
)(x1y2 + x2y1)‖.

From (∗∗), 1 ≥ f((a± 1
n )x1x2 + (a∓ 1

n )y1y2 + c(x1y2 +x2y1)) = 1 + 1
n |α−β|, hence

α = β and 1 ≥ f(ax1x2+(a± 1
n )y1y2+(c∓ w

n(1+w2) )(x1y2+x2y1)) = 1+ 1
n |β−

w
1+w2 γ|,

hence β = w
1+w2 γ. It follows that, by (∗),

1 = aα+ aβ + cγ =
γ

1 + w2
(2aw + c(1 + w2)) =

γ

1 + w2
.

Therefore, α = w = β, γ = 1 + w2, hence f = δ(1,w),(1,w) is uniquely determined.
If c ≤ a, let g, h ∈ Ls(

2d∗(1, w)2)∗ such that g(x1x2) = 1, g(y1y2) = w2, g(x1y2+

x2y1) = 2w, h(x1x2) = 1+w2

2 = h(y1y2), h(x1y2 + x2y1) = 2w. Theorem 2.4 shows
that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies that T is not smooth. In
particular, extreme 1

(1+w)2 (x1x2 + y1y2 + (x1y2 + x2y1)) is not smooth. Suppose

that a = −b, c > 0. We claim that T is not smooth.
If c < |b|, w ≤ c

|b| and w ≥
√

2−1, let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) =

1, g(y1y2) = w2, g(x1y2+x2y1) = 2w, h(x1x2) = 1−w2

2 , h(y1y2) = − (1−w2)
2 , h(x1y2+

x2y1) = 2w. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies
that T is not smooth.

If c < |b|, w ≤ c
|b| and w <

√
2−1, let g, h ∈ Ls(

2d∗(1, w)2)∗ such that g(x1x2) =

w, g(y1y2) = −w, g(x1y2 + x2y1) = 1 − w2, h(x1x2) = w − ε, h(y1y2) = −(w −
ε), h(x1y2 + x2y1) = 1 − w2 for a sufficiently small ε > 0. Theorem 2.4 shows that
‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies that T is not smooth. In particular,
extreme 1

1+w2 (x1x2 − y1y2 + w(x1y2 + x2y1)) is not smooth.

If c < |b|, w > c
|b| , then w >

√
2 − 1. Let g, h ∈ Ls(

2d∗(1, w)2)∗ such that

g(x1x2) = w, g(y1y2) = −w, g(x1y2 + x2y1) = 1 − w2, h(x1x2) = w − ε, h(y1y2) =
−(w−ε, ), h(x1y2+x2y1) = 1−w2. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) =
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h(T ), which implies that T is not smooth. In particular, extreme 1
1+w2 (x1x2−y1y2+

1−w
1+w (x1y2 + x2y1)) is not smooth.

If c > |b|, w ≤ |b|c and w <
√

2−1, let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) =

w, g(y1y2) = −w, g(x1y2 + x2y1) = 1 − w2, h(x1x2) = w − ε, h(y1y2) = −(w −
ε, ), h(x1y2 + x2y1) = 1− w2 for a sufficiently small ε > 0. Theorem 2.4 shows that
‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies that T is not smooth.

If c > |b|, w ≤ |b|c and w ≥
√

2−1, let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) =

1, g(y1y2) = w2, g(x1y2+x2y1) = 2w, h(x1x2) = 1−w2

2 , h(y1y2) = − (1−w2)
2 , h(x1y2+

x2y1) = 2w. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies
that T is not smooth.

If c > |b|, w > |b|
c and |b|c > 1−w

1+w , let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) =

1, g(y1y2) = w2, g(x1y2+x2y1) = 2w, h(x1x2) = 1−w2

2 , h(y1y2) = − (1−w2)
2 , h(x1y2+

x2y1) = 2w. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ = g(T ) = h(T ), which implies
that T is not smooth.

If c > |b|, w > |b|
c and |b|c < 1−w

1+w , let g, h ∈ Ls(
2d∗(1, w)2)∗ such that g(x1x2) =

w, g(y1y2) = w, g(x1y2+x2y1) = 1+w2, h(x1x2) = w−ε = h(y1y2), h(x1y2+x2y1) =
1 + w2 for a sufficiently small ε > 0. Theorem 2.4 shows that ‖g‖ = 1 = ‖h‖ =
g(T ) = h(T ), which implies that T is not smooth.

If c = |b|, then T = 1
1+2w−w2 [x1x2 − y1y2 + (x1y2 + x2y1)] is an extreme point,

so it is not smooth. Indeed, let 2w < gε(x1y2 + x2y1) < 1 − w2 and gε(x1x2) =
1+2w−w2−γ

2 , gε(y1y2) = −α. Theorem 2.4 shows that ‖gε‖ = 1 = gε(T ), which
implies that T is not smooth.

Case 3: |b| < a and c > 0

Suppose that T is not smooth. If b ≥ 0, then, by Theorem 2.5, w = c−a
c−b and

a < c. Then

bw2 + 2cw + a = 1 = (a+ b)w + c(1 + w2).

Simple computation shows that T = ( 1−w
1+w )x1x2 + 1

1+w (x1y2 + x2y1). Suppose that
b < 0. If w ≤ c

|b| , then, by Theorem 2.5,

bw2 + 2cw + a = 1 = (a− b)w + c(1− w2).

Simple computation shows that T = ( 1+w+w(w2−3)c
1+w2 )x1x2 + (w−1+(1−3w2)c

w(1+w2) )y1y2 +

c(x1y2 + x2y1) for 1
2+2w ≤ c < 1

1+2w−w2 . In particular, if c = 1
2+2w , then extreme

1
2+2w [(2 + w)x1x2 − 1

wy1y2 + (x1y2 + x2y1)] is not smooth.

If w > c
|b| , then, by Theorem 2.5,

a− bw2 = 1 = (a− b)w + c(1− w2).

Simple computation shows that T = ( 1+w(1+w)c
1+w )x1x2 +(−1+(1+w)c

w(1+w) )y1y2 +c(x1y2 +

x2y1) for 0 < c < 1
2+2w .
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If w ≤ |b|c , then, by Theorem 2.5,

bw2 + 2cw + a = 1 = (a− b)w + c(1− w2).

Simple computation shows that T = ( 1+w+w(w2−3)c
1+w2 )x1x2 + (w−1+(1−3w2)c

w(1+w2) )y1y2 +

c(x1y2 + x2y1) for 1
1+2w−w2 ≤ c ≤ 1

(1+w)2(1−w) . In particular, if c = 1
(1+w)2(1−w) ,

then extreme 1
(1+w)2(1−w) ((1−w−w

2)x1x2−wy1y2 + (x1y2 +x2y1)) is not smooth

is not smooth.
If w > |b|

c , then, by Theorem 2.5,

bw2 + 2cw + a = 1 = (a+ b)w + c(1 + w2).

Simple computation shows that T = ( 1−w(1+w)c
1+w )x1x2 + ( 1−(1+w)c

1+w )y1y2 + c(x1y2 +

x2y1) for 1
1+w < c < 1

(1+w)2(1−w) . Therefore, it completes the proof. 2

We show that the unit sphere SLs(2d∗(1,w)2) is the disjoint union of three
nonempty subsets as follows:

Theorem 2.7.

SLs(2d∗(1,w)2) = smBLs(2d∗(1,w)2)

⋃
extBLs(2d∗(1,w)2)

⋃
A,

where A consists of ax1x2 + by1y2 + c(x1y2 + x2y1) with (a = b = 0, c = ± 1
1+w2 ),

(a 6= b, ab ≥ 0, c = 0), (a = b, 0 < ac, 0 < |c| < |a|), (a 6= |c|, a = −b, 0 < ac, 0 < |c|),
(a = 1−w

1+w , b = 0, c = 1
1+w ), (a = 1+w+w(w2−3)c

1+w2 , b = w−1+(1−3w2)c
w(1+w2) , 1

2+2w < c <
1

(1+w)2(1−w) , c 6=
1

1+2w−w2 ), (a = 1+w(1+w)c
1+w , b = −1+(1+w)c

w(1+w) , 0 < c < 1
2+2w ) or (a =

1−w(1+w)c
1+w , b = 1−(1+w)c

1+w , 1
1+w < c < 1

(1+w)2(1−w) ).

Proof. Note that in the proof of Theorem 2.6 it has shown that every extreme
symmetric bilinear form is not smooth. It follows from Theorems 2.3 and 2.6. 2
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