• 제목/요약/키워드: support vector regression (SVR)

검색결과 154건 처리시간 0.027초

Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정 (Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression)

  • 조경래;석줄기;이동춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.106-108
    • /
    • 2004
  • 서보 시스템의 전체 제어 성능은 기계적 상수의 변화와 부하 토크의 영향을 크게 받는다. 그러므로 서보 시스템의 성능을 향상시키기 위해서는 기계적 상수와 부하 토크를 정확히 알 필요가 있다. 본 논문에서는 Support Vector Regression (SVR)을 이용한 기계적 상수와 부하 토크의 추정 알고리즘을 제안한다. 여기서 제안된 추정 알고리즘인 SVR은 통계적인 학습 이론을 기반으로 한 새로운 추정 알고리즘으로 적은 샘플, 비선형, 국부해의 문제를 극복하고 강력한 성능을 발휘한다. 실험 결과는 제안된 SVR 알고리즘이 기계적 상수와 부하토크를 비교적 정확하게 추정하고 있음을 보여준다.

  • PDF

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Application of support vector regression for the prediction of concrete strength

  • Lee, Jong-Jae;Kim, Doo-Kie;Chang, Seong-Kyu;Lee, Jang-Ho
    • Computers and Concrete
    • /
    • 제4권4호
    • /
    • pp.299-316
    • /
    • 2007
  • The compressive strength of concrete is a commonly used criterion in producing concrete. However, the test on the compressive strength is complicated and time-consuming. More importantly, since the test is usually performed 28 days after the placement of the concrete at the construction site, it is too late to make improvements if unsatisfactory test results are incurred. Therefore, an accurate and practical strength estimation method that can be used before the placement of concrete is highly desirable. In this study, the estimation of the concrete strength is performed using support vector regression (SVR) based on the mix proportion data from two ready-mixed concrete companies. The estimation performance of the SVR is then compared with that of neural network (NN). The SVR method has been found to be very efficient in estimation accuracy as well as computation time, and very practical in terms of training rather than the explicit regression analyses and the NN techniques.

SVR을 이용한 Looperless 열연 공정에서의 스텐드간 장력 추정 (Tension Estimation of Interstand Strip in Looperless Hot Rolling Process Using SVR)

  • 한동창;심준홍;박철재;박해두;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.1007-1011
    • /
    • 2007
  • This paper proposes a novel tension estimation of interstand strip in looperless hot rolling process using SVR(Support Vector Regression). The quality of hot coil which is final product of hot rolling process is substantially decided by tension control of finishing rolling in hot rolling process. The fluctuation of the strip tension in conventional hot rolling process is controlled by the strip tension measured by an inter-stand looper. However, the looper can cause a motor trip and tension hunting in hot rolling process, therefore, alternative method is essential to replace it. In this paper, the mathematical modeling of tension mechanism is implemented to estimate the tension using the proposed SVR algorithm without looper in hot rolling process. The simulation results show a reliable estimation performance and a possibility of tension control using SVR technique.

Noise Removal using Support Vector Regression in Noisy Document Images

  • Kim, Hee-Hoon;Kang, Seung-Hyo;Park, Jai-Hyun;Ha, Hyun-Ho;Lim, Dong-Hoon
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.669-680
    • /
    • 2012
  • Noise removal of document images is a necessary step during preprocessing to recognize characters effectively because it has influences greatly on processing speed and performance for character recognition. We have considered using the spatial filters such as traditional mean filters and Gaussian filters, and wavelet transformed based methods for noise deduction in natural images. However, these methods are not effective for the noise removal of document images. In this paper, we present noise removal of document images using support vector regression. The proposed approach consists of two steps which are SVR training step and SVR test step. We construct an optimal prediction model using grid search with cross-validation in SVR training step, and then apply it to noisy images to remove noises in test step. We evaluate our SVR based method both quantitatively and qualitatively for noise removal in Korean, English and Chinese character documents, and compare it to some existing methods. Experimental results indicate that the proposed method is more effective and can get satisfactory removal results.

Support Vector Regression을 이용한 이상치 데이터분석 (An Outlier Data Analysis using Support Vector Regression)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.876-880
    • /
    • 2008
  • 주어진 데이터에서 대부분의 다른 관측치들에 비해 지나치게 크거나 작은 관측치를 이상치라고 한다. 이상치는 몇 가지 원인에 의해 발생한다. 이상치를 포함한 데이터의 분석결과는 이 값을 포함하지 않은 경우와 크게 달라질 수 있다. 일반적으로 이상치는 탐지를 통하여 찾아내어 제거한 후에 데이터분석을 수행한다. 하지만 사기탐지, 네트워크 침입 등의 데이터 마이닝 분야에서는 이상치가 중요한 정보를 포함하고 있기 때문에 반드시 포함하여 데이터분석을 수행하여야 한다. 본 논문에서 다루는 회귀모형에서는 기존의 단순, 다중 회귀분석은 이상치에 대하여 안정된 모형을 구축하기 어렵기 때문에 표준화 잔차 또는 스튜던트화된 잔차를 이용하여 이상치를 찾아내고 제거한 후의 데이터분석 수행을 추천한다. 본 논문에서는 회귀모형에서 이상치를 포함하여 효과적으로 데이터분석을 수행할 수 있는 한 방법으로 Vapnik이 제안한 통계적 학습이론에 기반한 Support Vector Regression(SVR)을 이용하였다 인공 데이터를 생성한 모의실험 결과 기존의 회귀모형에 비해 SVR의 향상된 결과를 확인할 수 있었다.

Predicting the 2-dimensional airfoil by using machine learning methods

  • Thinakaran, K.;Rajasekar, R.;Santhi, K.;Nalini, M.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.291-304
    • /
    • 2020
  • In this paper, we develop models to design the airfoil using Multilayer Feed-forward Artificial Neural Network (MFANN) and Support Vector Regression model (SVR). The aerodynamic coefficients corresponding to series of airfoil are stored in a database along with the airfoil coordinates. A neural network is created with aerodynamic coefficient as input to produce the airfoil coordinates as output. The performance of the models have been evaluated. The results show that the SVR model yields the lowest prediction error.

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정 (Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression)

  • 조경래;석줄기;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.738-741
    • /
    • 2004
  • The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using Support Vector Regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.

  • PDF