References
- J. Shepherd, Detonation in gases, Proc. Combust. Inst. 32 (2009) 83-98. https://doi.org/10.1016/j.proci.2008.08.006
- G. Ciccarelli, T. Ginsberg, J.L. Boccio, Detonation Cell Size Measurements in High-temperature Hydrogen-air-steam Mixtures at the BNL High-temperature Combustion Facility, Rep. No. NUREG/CR-6391; BNL-NUREG-52482, U.S. Nuclear Regulatory Commission, Rockville, MD, 1997.
- S.B. Dorofeev, V.P. Sidorov, M.S. Kuznetsov, I.D. Matsukov, V.I. Alekseev, Effect of scale on the onset of detonations, Shock Waves 10 (2000) 137-149. https://doi.org/10.1007/s001930050187
- W. Breitung, C. Chan, S. Dorofeev, A. Eder, B. Gelfand, M. Heitsch, R. Klein, A. Malliakos, E. Shepherd, E. Studer, P. Thibault, Flame Acceleration and Deflagration-to-detonation Transition in Nuclear Safety, Nuclear Safety Rep. No. NEA/CSNI/R(2000)7, OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2000, pp. 1-455.
- S. Dorofeev, A. Bezmelnitsin, V. Sidorov, DDT Scaling for Severe Accidents. Detonation Cell Size Data as a Function of Composition and Initial Conditions, Rep. No. RRC "Kurchatov Institute" RRC KI, 80-05, 1997.
- K. Shchelkin, Y. Troshin, Gas Dynamics of Detonations, Mono Book Corp., Baltimore, MD, 1965.
- J. Shepherd, I.O. Moen, S.B. Murray, P.A. Thibalut, Analyses of the cellular structure of detonations, in: Symposium (International) on Combustion (Vol. 21, No. 1)Elsevier, Amsterdam, Netherlands, 1988, pp. 1649-1658.
- H. Lee, D. Stewart, Calculation of linear detonation instability: one-dimensional instability of plane detonation, J. Fluid Mech. 216 (1990) 103-132. https://doi.org/10.1017/S0022112090000362
- S. Sch€offel, F. Ebert, A numerical investigation of the reestablishment of a quenched gaseous detonation in a Galilei-transformed system, in: Proceedings of the 16th International Symposium on Shock Tubes and Waves, Aachen, FRG, 1987, pp. 779-786.
- A. Gavrikov, A.A. Efimenko, S.B. Dorofeev, A model for detonation cell size prediction from chemical kinetics, Combust. Flame 120 (2000) 19-33. https://doi.org/10.1016/S0010-2180(99)00076-0
-
R. Akbar, M. Kaneshige, E. Schultz, J. Shepherd, Detonations in
$H_2-N_2O-CH_4-NH_3-O_2-N_2$ Mixtures, Explosion Dynamics Laboratory Rep. No. FM97-3, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA, 2000. - W. Hardle, E. Mammen, Comparing nonparametric versus parametric regression fits, Ann. Stat. 21 (1993) 1926-1947. https://doi.org/10.1214/aos/1176349403
- J. Shepherd, AIAA Progress in Astronautics and Aeronautics, vol. 106, AIAA, New York, 1986, p. 263.
- M. Kaneshige, J.E. Shepherd, Detonation Database, Technical Rep. FM97-F98, GALCIT, 1997 [cited 2017 Jul 17]. Available from: http://www.galcit.caltech.edu/detn_db/html/.
- D.Goodwin, H.K.Moffat, R.L. Speth, Cantera: an Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes (Version 2.2.1), 2016 [cited 2017 Jul 17]. Available from: http://www.cantera.org.
- J.G. Carbonell, R.S. Michalski, T.M. Mitchell, An overview of machine learning, in: Machine Learning, Springer, Berlin, Germany, 1983, pp. 3-23.
- A. Smola, B. Scholkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004) 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- D. Basak, S. Pal, D.C. Patranabis, Support vector regression, Neural Inf. Process. Lett. Rev. 11 (2007) 203-224.
- R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Proc. International Joint Conference on Artificial Intelligence, vol. 14, Morgan Kaufmann, San Francisco, CA, 1995, pp. 1137-1145.
- F. Pedregosa, Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825-2830.
Cited by
- Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen vol.51, pp.2, 2017, https://doi.org/10.1016/j.net.2018.11.004
- A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation vol.51, pp.7, 2017, https://doi.org/10.1016/j.net.2019.05.005
- Estimation of Wind Turbine Energy Production Value by Using Machine Learning Algorithms and Development of Implementation Program vol.43, pp.6, 2017, https://doi.org/10.1080/15567036.2019.1631410