References
- Aizerman, M. A., Braverman, E. M. and Rozonoer, L. I. (1964), "Theoretical foundations of the potential function method in pattern recognition learning", Automation and Remote Control, 25, 821-837.
- Arora, J. S. (1989), Introduction to Optimum Design, McGraw-Hill, New York.
- Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993), Nonlinear Programming: Theory and Algorithms, 2nd Ed., John Wiley & Sons, Inc., New York.
- Cherkassky, V. and Ma, Y. (2004), "Practical selection of SVM parameters and noise estimation for SVM regression", Neural Network, 17, 113-126. https://doi.org/10.1016/S0893-6080(03)00169-2
- Cherkassky, V. and Mulier, F. (1998), Learning from data: Concepts, theory, and methods, Wiley, New York.
- Gunn, S. R. (1998), "Support vector machines for classification and regression", Technical Report ISIS-1-98, University of Southampton.
- Ji, T. and Lin, X. J. (2006), "A mortar mix proportion design algorithm based on artificial neural networks", Comput. Concrete, 3(5).
- Kim, J. I., Kim, D. K., Feng, M. Q. and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Mater. Civ. Eng., ASCE, 16(3), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Lee, S. C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Madan, A. (2005), "Vibration control of building structures using self-organizing and self-learning neural networks", J. Sound Vib., 287(4/5), 759-784. https://doi.org/10.1016/j.jsv.2004.11.031
- Mukherjee, S., Osuna, E. and F. Girosi. (1997), "Nonlinear prediction of chaotic time series using support vector machines", Proceedings of IEEE NNSP'97 Amelia Island, FL.
- Muller, K. R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J. and V. Vapnik. (1997) "Predicting time series with support vector machines", Proceedings of ICNN'97, LausNNe.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Asghar Bhatti, M. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Construction and Building Materials, 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Popovics, S. (1998), "History of a mathematical model for strength development of Portland cement concrete", ACI Mater. J., 95(5), 593-600.
- Snell, L. M., Van Roekel, J. and Wallace, N. D. (1989), "Predicting early concrete strength", Concrete International, 11(12), 43-47.
- Stitson, M. O., Weston, J. A. E., Gammerman, A , Vork, V. and Vapnik, V. (1996), "Theory of support vector machines", Technical Report CSD-TR-96-17, Department of Computer Science, Royal Holloway College, University of London.
- Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer Berlag, New York.
- Vapnik, V. (1999a), The Nature of Statistical Learning Theory, 2nd edition, Springer Berlag, New York.
- Vapnik, V. (1999b), "An overview of statistical learning theory", IEEE Transactions on Neural Networks, 10(5), 988-999. https://doi.org/10.1109/72.788640
- Ye, Q., Huang, Q., Gao, W. and Zhao, D. (2005), "Fast and robust text detection in images and video frames", Image Vis. Comp., 23(6), 565-576. https://doi.org/10.1016/j.imavis.2005.01.004
- Yu, P. S., Chen, S. T. and Chang, I. F (2006), "Support vector regression for the real-time flood stage forecasting", J. Hydrology, 328(3-4), 704-716. https://doi.org/10.1016/j.jhydrol.2006.01.021
- Zhang, J., Sato, T. and Iai, S (2006), "Support vector regression for on-line health monitoring of large-scale structures", Structural Safety, 28(4), 392-406. https://doi.org/10.1016/j.strusafe.2005.12.001
Cited by
- Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams vol.98, 2013, https://doi.org/10.1016/j.engfracmech.2012.11.014
- Time-Varying Identification Model for Crack Monitoring Data from Concrete Dams Based on Support Vector Regression and the Bayesian Framework vol.2017, 2017, https://doi.org/10.1155/2017/5450297
- Kernel-based models for prediction of cement compressive strength vol.28, pp.S1, 2017, https://doi.org/10.1007/s00521-016-2419-0
- Prediction of the Strength Properties of Carbon Fiber-Reinforced Lightweight Concrete Exposed to the High Temperature Using Artificial Neural Network and Support Vector Machine vol.2018, 2018, https://doi.org/10.1155/2018/5140610
- Modeling properties of self-compacting concrete: support vector machines approach vol.5, pp.5, 2008, https://doi.org/10.12989/cac.2008.5.5.461
- Stability number prediction for breakwater armor blocks using Support Vector Regression vol.15, pp.2, 2011, https://doi.org/10.1007/s12205-011-1031-1
- Static and cyclic performance of cementitious composites reinforced with glass-fibres vol.68, pp.329, 2018, https://doi.org/10.3989/mc.2018.10216
- Temperature dependent modelling of magnetorheological (MR) dampers using support vector regression vol.28, pp.2, 2019, https://doi.org/10.1088/1361-665X/aae5f0
- Support vector regression methodology for storm surge predictions vol.35, pp.16, 2008, https://doi.org/10.1016/j.oceaneng.2008.08.004
- Prediction of compressive strength of lightweight mortar exposed to sulfate attack vol.19, pp.2, 2007, https://doi.org/10.12989/cac.2017.19.2.217
- Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach vol.32, pp.12, 2007, https://doi.org/10.1007/s00521-019-04267-w
- Multifractal Analysis and Compressive Strength Prediction for Concrete through Acoustic Emission Parameters vol.2021, pp.None, 2007, https://doi.org/10.1155/2021/6683878