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Tension Estimation of Interstand Strip in Looperless
Hot Rolling Process Using SVR
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Abstract : This paper proposes a novel tension estimation of interstand strip in looperless hot rolling process using SVR(Support
Vector Regression). The quality of hot coil which is final product of hot rolling process is substantially decided by tension control of
finishing rolling in hot rolling process. The fluctuation of the strip tension in conventional hot rolling process is controlled by the
strip tension measured by an inter-stand looper. However, the looper can cause a motor trip and tension hunting in hot rolling process,
therefore, alternative method is essential to replace it. In this paper, the mathematical modeling of tension mechanism is implemented
to estimate the tension using the proposed SVR algorithm without looper in hot rolling process. The simulation results show a
reliable estimation performance and a possibility of tension control using SVR technique.

Keywords : hot rolling process, loopetless tension control, support vector regression

I. Introduction

To enhance the productivity and quality of coil, Kawasaki steel
company adopted endless rolling process which needs multiple
high technologies in early 1990s [1]. The interstand tension of the
strip in the finishing mill train should be kept constant by
controlling the roll gap and speed by using the measured tension
information of the strip. However, speed error of the motors
caused by load conditions of each roll or different properties of the
strip leads to fluctuation of interstand tension, which brings a
quality deterioration of the hot coil. Therefore, it is essential to
maintain the tension constantly in rolling process by proper
control algorithm based on measured or estimated tension. In case
of permanent magnetic-type motor, the exact torque can be
calculated directly by using the proportional relation between
torque and amature current of the motor by measuring current
without internal or external sensors to measure the torque.
However, it is not easy to extract tension torque based on the
measured current because the measured current includes some
other components such as roll torque, tension torque, acceleration
torque and loss torque. The conventional method to measure
tension directly using a torque sensor suffers from data
transmission problems by a rolling impact. Therefore, it is very
difficult to obtain reliable information on tension based on current
of main motor in hot rolling process. An alternative method using
sensors attached on multiple points to measure torque of each
motor has limitation in use because of sensor price and set-up cost
as well as difficulty in maintenance. In hot rolling process, the
looper used for detection and control of tension in conventional
rolling process can’t be installed because of the inherent
characteristic of the system. In addition, a reliability of the data
through torque sensor could not be guaranteed because of
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deteriorated signal by a physical impact and external disturbances.
In this paper, we propose a novel tension estimator using Support
Vector Regression (SVR) technique to estimate exact information
on tension for the tension control without looper in hot rolling
process [2].

II. Mathematical Modeling of the Tension

1. Modeling of the hot rolling system

In endless rolling process, the consecutive strips should be
welded at each frontier parts after sheet bar welder for effective
gauge and tension control. Fig. 1 shows structure of endless hot
rolling process under consideration,
2. Mathematical modeling of the strip tension

Finishing mill with 6 or 7 stands rolls the strip from roughing
mill process until it gets target thickness. Mathematical model for
strip tension is derived for the plant with 2 rolls and strip material
based on physical model shown in Fig. 2, where some necessary
assumptions are imposed as follows [2};

(1) The strain of the strip is very small and evenly distributed.

(2) Density of the strip is constant.

(3) More forces are imposed for the direction that strip flows.

(4) There is no slippage between roll and strip.

(5) Density and MOFE(The Modulus of Elasticity) of material
are constant.
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Fig. 1. Structure of endless hot rolling process.
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Fig. 2. Physical model between two stands.

For 1 set of independent stands, the rolling torque on role can
be described as G, =P-I differently from the two stand case

where forward and backward tension are considered. The

equation of rolling torque has the form of equation (1) by
considering the equilibrium of dynamic force between two rolls

(31
G, =P1+b-T_,—aT,, @

where
G, : rolling torque
P : rolling load
[ : length of torque arm
b : length of backward tension arm
¢ : length of forward tension arm
T,,, - forward tension (=7 )

T,_, ;- backward tension (=T, )

Therefore, forward tension 7;,,, to estimate is given by
G, b
Tyy=2P=—L+2T,, @
a a a

In addition, the tension between two stands is generated in strip
between first and second stand. Therefore, as the backward
tension vanishes, equation (2) can be described by

Lp-Llg, G)

T o=t
a a
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II1. The Tension Estimation Using SYR

A regression method is an algorithm that estimates an unknown
mapping between a system's input and outputs, from the available
data or training data. Onee such a dependency has been accurately
estimated, it can be used to predict system outputs from the input
values. The goal of regression is to select a function which
guarantees optimal approximation of the system's response. A
function approximation problem can be formulated to obtain a
function f from a set of observations, (¥,,%),...,(Vy>%y)

with xeR™ and ye R, where N, the number of training data,

x, the input vector, and y, the output data respectively. The
function in SVR has the form of

flx,0)=0"K(x)+b 4

RO - XHS3- AAEBE =2X H 13 &, M 10 & 2007. 10

Where K() is a mapping from R" to so-called higher
dimensional feature space F,w € F is a weight vector to be
identified in the function, and b is a bias term. To calculate the
patameter vector @ the following cost function should be
minimized [6-11]}

Min%”w”z + CZ &+ 5)

subject to
y,—ox,—-b<e+é
ox,+b-y, <e+&
£E20,C>0,i=1,..,N

where C is a pre-specified value that controls the cost incurred by
training errors. The slack variables, £,& are introduced to

accommodate error on the input training set.

With many reasonable choice of loss function, &, the solution
will be characterized as the minimum of a convex function. The
constraints also include a term, &, which allows a margin of
error without incurring any cost. The value of & can affect the
number of support vectors used to construct the regression
function. The bigger & is, the fewer support vectors are selected.
Hence, ¢ -values affect model complexity.

Our goal is to find function f(x,) that has at most &
deviation from the actually obtained targets y, for all the
training data, and at the same time, is as flat as possible for good
generalization. In other words, we do not care about errors as long
as they are less than &, but will not accept any deviations larger
than e. This is equivalent to minimize an upper bound on the
generalization error, rather than minimize training etror.

The optimization problem in equation (5) can be transformed
into the dual problem, and its solution is given by equation (6).

S =Y (e~ @ MK (x) K()+b ©

st0<a £C0<q <C

In equation (6), the inner product (K(x,)- K(x)) in the feature
space is usually considered as a kernel function K(x,,x) several
choices for the kernel are possible to reflect special properties of
approximating functions:

Linear kernel: K(x,,x)=x"x,

RBF kemel: K(x,,x) = exp(—|x— x| /26?)
The input data are projected to a higher dimensional feature space
by mapping K () [5].

In equation (3), target data and training data are defined as

T, and {P,G,} respectively. The basic idea is to minimize

i+

error between reference forward tension and calculate T,

Qi+l
Hence, robust forward tension of strip estimation under parameter
I 1 Lo . . . .
Z,—— variation circumstance is achieved. The tension model is

a a

expressed as equation (7), (8), (9).
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Fig. 3. Block diagram for tension estimation using SVR.
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y = T;,HI (7)
x={P,G,} ®

Hence, equation (6) can be depicted as

T.

i+l

=0 G, +w,P+b (10)

Fig. 2 shows the block diagram for the tension estimation using
SVR. The measured tension can be used as desired value of SVR
and compared with the estimated and measure tension [6].

IV. Simulation Results and Discussion

Simulation has been performed to prove the effectiveness of the
proposed control algorithm. The simulator used in simulation is
designed under the same rolling conditions in the field. Table 1
shows conditions for simulation. The block diagram for tension
control using estimated tension is depicted in Fig. 4[6].

The simulation results show the state of tension estimation
under the normal condition and under the conditions of the rolling
torque with magnitude of 150% and the rolling load of 50% of the
reference state respectively. The tension between two stands is
controlled by the feedback of the estimated tension.

L AElA 2136=1).
Table 1. Simulation conditions(i = 1).

Inlet/Outlet H(1) (1), H(2) h2)
Thickness

(mm) 42 3.13 2.53
Refer.ence To: 7, T3

tension

(kef) 0 1.1 0

Supron Vector Feyecs
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Fig. 4.Block diagram for tension estimation based on Matlab.
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Fig. 5. Block diagram of the tension control using estimated tension.

Fig. 6 shows that the outputs of SVR trained by rolling load and
torque estimate measured tension with small error. And error of
estimated tension is depicted in Fig. 7. Figs. 8 and 9 show that the
estimation based on the proposed algorithm is robust to sudden
change of learning data. Fig. 10 indicates that the controlled
tension by feedback of the estimated tension converges to the
desired tension. Fig. 11 shows an output of the roll speed to
control the tension.
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Fig. 6. Tension estimation using SVR.
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Fig. 7. Error of the estimated tension.
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Fig. 8. Tension estimation using SVR(0.5*P, 1.5%G).

Estimat an error(kgl)

Time(s)

1% 9. 2R AH(0.5*P, 1.5*G) 23,
Fig. 9. Error of the estimated tension(0.5*P, 1.5*G).
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Fig. 10. Tension control behavior for step input under SVR.
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Fig. 11.Roll speed change for the tension control.

V. Conclusion

This paper proposes a new technique to estimate interstand
tension with using looper based on SVR algorithm to enhance
threading stability in the hot rolling process. The tension
estimation by SVR using rolling load and torque as its training
data is compared with the measured tension in the field to observe
the tracking trend of the proposed technique. The proposed
technique based on SVR shows that the resultant tension estimates
the measured tension with small error. The tension control by the
feedback of the estimated tension is under way.
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