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Abstract

In the 21st century, we now face the serious problems of the enormous consumption of the energy resources.
Depending on the power consumption increases, both China and South Korea face a reduction in available re-
sources. This paper considers the regression models and time-series models to compare the performance of the
forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity de-
mand accurately on the short-term period (68 months) data in Northeast China and find the relationship with
Korea. Among the models the support vector regression (SVR) model shows superior performance than time-
series models for the short-term period data and the time-series models show similar results with the SVR model
when we use long-term period data.

Keywords: e-support vector regression (e-SVR), regression, time series, electricity demand fore-
casting, mean absolute percentage error (MAPE)

1. Introduction

Industrial development and improved comfortable standards have led to the explosion of resource
consumption and resource depletion. We have to match the consumption and demand of electricity
because it is impossible to store. A mismatch between supply and demand will make will lead to
“Black Out” situation that has a serious impact on the utility industry due to the lack of electricity.

In case of China, the 80% of the electricity power generation source is the thermal power. We
can assume that the Chinese government may utilize nuclear power and solar power to expand the
development of alternative measures as a new energy source if we consider the dramatically increasing
demand from China over the past decades.

Economic development, social changes, industrial policy, and seasonal components are factors
that influence electrical demand. Establishing a single prediction model that can be a factor in any
influence on the account is not realistic (Wang et al., 2009). Until now, forecasting models can be
classified into several models: Holt-winters model (Taylor, 2003), Triple seasonal Holt-winters model
(Taylor, 2010). Multiple linear regression model (Karin, 2011), e-SVR model (Claveria et al., 2015).
These methods do not need a large amount of historical data and composed of three components:
the trend, seasonal are components and stochastic errors. Yoon et al. (2009) studied the electricity
patterns in Korea based monthly maximum load data.
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In this paper, we focus on comparing the performance of proposed models. We find best per-
formance models among the models at different data patterns and different periods of training data.
This paper is organized as following: Section 2 introduces the proposed models; Section 3 shows the
results of the performance evaluation different data; Section 4 has the conclusion in the paper.

2. Forecasting Models
2.1. Linear regression model
Linear regression model with trend and seasonality components can be written as Equation (2.1).
. [2mt 2mt
Z; =Bo +Pit+Brsin|— |+ Bzcos|— | + €. 2.1)
12 12
Where Z;is electricity demand here, ¢ is sampling time, the unknown parameters 8 = (8o, 81,32,83)
is regression coefficients and ¢, is model error at time ¢, and we assume ¢ ~ N(0, of).

2.2. Holt-Winters model
2.2.1. Additive seasonal model

Winters’ additive seasonal model at time n+/ was proposed in Winters (1960) and defined as Equation
(2.2).

Znst = Toyr + Syt + Ly (2.2)

Note that 7, is error term, 7,4, is trend component and S 4, is seasonality component with the
period of s. If we assume linear trend of T),.; as Equation (2.3),

Tn+l =ﬁ0,n +:81,n(n + l) = (ﬁO,n +:81,nn) +:81,nl = Tn +ﬁ1,nl (23)

additive seasonality component of sas S; = Sy = Sipos =--- (i=1,2,...,5)and 3] ;S; = 0. Then
Z,+; the forecasting value of future time on n is

ZAn(l) = 7"«” +B1,nl + LS,;nJrl—Ss [ = l’ 2, cees S,
Zy(D) =Ty + Bial + Spsinss I=s+1,5+2,...,25,
Zo() =Ty + Bral + Spyiags 1=25+1,25+2,...,3s.

2.2.2. Multiple seasonal model
Winters’ multiplicative seasonal model is defined as Equation (2.4)

Zpwi = Tpgt + St + Iy
= (Tn + ﬁl,nl) Sn+l + In+l- (24)

Where, the notation for T),.;,S ,4; and I,,,; are as above and multiplicative seasonal components s as
S,’ :S,'+s ZSH_QS = - (l= 1,2,...,s)ande=OS,- =S.
Then Z,,; the forecasting value on # is

Z,\n(l) = (fn +E1,n1)§n+l—s’ /= 1’ 2,”-,5,
Zo() = (T + Pral) Suricaes I=s+1,5+2,...,25,
Zo() = (T + Pral) Siczes  1=25+1,25+2,....3s.
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2.3. Seasonal ARIMA model
Seasonal ARIMA (SARIMA) model of Box and Jenkins (1970) is given by Equation (2.5).
¢p(BYDp(B)(1 = BY'(1 = B (Y, — p) = 6,(B)Oo(B")é. (2.5)

Where ¢, is the white noise process. The ARIMA model is denoted as ARIMA(p, d, q) X (P, D, Q).
p,d, g, P, D, Q is integer, B present Back-Shift operator, s present seasonality, d, D are the orders of
differencing and seasonal differencing. The equations of the ¢,(B), ®p(B*), 6,(B), Og(B*) as:

¢p(B)=1-¢B—---—¢pB",
Op(B)=1-®B°* —---— ®pB's,

6,B)=1-6B—---—6,B,
Op(B)=1-0,B"—--- - dyB%s.

2.4. e-support vector regression (e-SVR)

The e-SVR seeks to estimate linear functions,
f(x) ={w, x) + b, (2.6)
where w,x€n, b € R
(X1, Y1), -« (X, yn) € XR.

Vapnik (1995) solved the problem by applying the minimization method as in Equation (2.7).

1 m
Sl +C Z] Vi = F)e. 2.7)

Then we can transform that into a constrained optimization problem by using slack variables, f(x;) —
y; > € and y; — f(x;) > €. We denote them by & and £*.
Formally, the previous optimization problem as Equations (2.8), (2.9)

minimize 7 (,£,£") = S ol + C ; (€ +&) (2.8)
f)—yi<e+é,

subjecttoy yi — f(x) < €+ &, forall i=1,...,m. 2.9)
£& =0,

Note that everything above € is restricted in slack variables. The slack variables are penalized
in the objective function via a regularization C. C is a constant to determine the trade off between
empirical risk and the flatness of model.

In order to find the solution for (2.8), (2.9), the key idea is to construct a Lagrangian from the
objective function (optimal objective function) and the corresponding constraints, by introducing a
dual set of multipliers which have to satisfy the constraints, a;, @},7;,7; = 0 as described in e.g.
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(Fletcher, 1987). Then we define a Lagrangian as:

m

1
L= §||w||2+C;ai(e+§i—yi+<w,x)+b)
—Za;‘(e+§;‘—yi+(w,x>+b)
i=1

- Z (& + &), (2.10)
i=1

It follows from the saddle point condition that the partial derivatives of with respect to the primal
variables have to vanish for optimality;

Oy = Z(ai —al) =0, @2.11)
i=1
AL =w~— Z(a;‘ —a;) =0, (2.12)
i=1
Be, *L=C— Z(a’i +a)) - Z(” +7%) = 0. (2.13)
i=1 i=1

Substituting (2.11), (2.12) and (2.13) into (2.10), then

1 m
3 2,(@ — a)(@; - @) x),

maximize b=l m (2.14)

—€ Z(a? —a;)+ Zyi(a? - a;),
i=1

i=1

subject to Z(a/;‘ -a)=0 and «;a; €[0,C].

i=1

In deriving (2.14), we eliminate the dual variables 7;, 17! through condition (2.13). Equation (2.12)
can be written as

m m

w= Z (af — @) x;, thus f(x) = Z (af — ;) {xi, x) + b.

i=1 i=1

In order to generalize the SV regression to nonlinear (Aizerman et al., 1964), to make the SV
algorithm in nonlinear could be achieved by simply preprocessing the training patterns x, by a map
® : y — F into some feature space F' and then applying the standard SV regression algorithm.
Therefore, if we use kernel trick which substitute @(x) for x, then only one part we need to replace is
(xi, xj) and we could have

f) =) (@ = a)K(x,x) +b. 2.15)
i=1
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Here, kernel function K takes the form of Equation (2.14)

1 mn
3 2@ — (@}~ a)K(x. x)),

maximize b=l m (2.16)

—e Y (@] —a)+ ) yila] - a),
i=1 i=1
m

subject to Z(a,» -a)=0 and a;c] €[0,C].

i=1

We use the Gaussian Radial basis function (RBF) kernel as the evaluation of forecasting shows
SVR with Gaussian RBF kernel outperforms in most cases (Claveria et al., 2015). The Gaussian RBF
kernel function is defined as

1
K(x,x;) = exp (—2(x - x,->2) , (2.17)
o
where o2 is the bandwidth of the Gaussian RBF kernel.

3. Data Analysis and Results

In order to compare the proposed models, the data used in this paper was applied in Wang et al. (2009)
which is the electricity demand of northeast China from ‘January, 2004’ to ‘April, 2009°. We use the
electricity sales volume from ‘January, 1965’ to ‘April, 2009’ to compare the performance of short
period data and long period data. The reason to choose Northeast China data and Korea data is that
we may consider climate effect occurs by different locations.

Regarding the e-SVR model, data are divided into two data sets: the training data set and the
testing data set (7 months).

The selection of three parameters in e-SVR, o (controls the Gaussian function width), € (controls
the width of the e-insensitive loss function), C. We fix o = 0.5, € = 0.5 and C = 100 to compare the
performance with benchmarking model.

The original data plots for electricity demand for Northeast China from ‘January, 2004’ to ‘August,
2008’, electricity sales in Korea from ‘January, 2004’ to ‘August, 2008’, and from ‘January, 1965’ to
‘August, 2008’ are as Figure 1. February or March are festival months that have seasonality and other
months have similar trends. So we considered seasonality.

We take trend and seasonality as independent variables in linear regression model. Table 1 shows
the fitting model for each of 3 data set for electricity demand (DATA1: Northeast China ‘January,
2004’ to ‘September, 2008’, DATA2: Korea ‘January, 2004’ to ‘September, 2008°, DATA3: Korea
‘January, 1965’ to ‘September, 2008’).

In this paper, we select multiplicative seasonality for Holt-Winters model. The parameters of
Smoothing constant (a), seasonal constant (8) and trend constant (y) in Holt-Winters model for the
three dataset models are estimated by ‘Holt-Winters’ function and smoothing constant @ in simple
exponential smoothing is estimated by ‘Ets’ function in R program (Table 2).

Regarding ARIMA model, this paper select the model with minimum AIC (Akaike’s Informa-
tion Criterion) which automatically computed by auto.arima function in R program. According to
the AIC, the best fitted seasonal ARIMA models for Data 1, 2, 3 are ARIMA(O, 1,1) x (0,0, 1),2,
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Figure 1: Original time series data.

Table 1: Parameter estimation of linear regression model

Parameter Data 1 Data 2 Data 3
Trend 1.2600 131611 59355
Season 2 —22.6900 —1263038 —477559
Season 3 —8.1094 —1944665 —423042
Season 4 —13.1151 —2713336 -517987
Season 5 —11.6678 —4222956 —790242
Season 6 —11.5524 —-3933078 —643828
Season 7 —6.4061 —3325752 —415332
Season 8 —6.6658 —-1971268 —12643
Season 9 —15.6395 —3273378 -399264
Season 10 -12.9036 —4877693 -936114
Season 11 —-5.1508 -3123890 —-623574
Season 12 5.0246 —1088342 —333128

ARIMA(0,0,1) x (0,1, 1);2, ARIMA(2, 1,3) x (0, 1, 1);2 respectively. Non-Seasonal ARIMA mod-
els are ARIMAC(1, 0, 1), ARIMA(1, 1, 1) and ARIMA(2, 2, 2).

Z - F

1 n
MAPE = — 1 ) 1
. Z x 100(%) (3.1

t=1

1
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Table 2: Parameter estimation of Holt-Winters

681

Parameter Data 1 Data 2 Data 3
a 0.5214 0.506 0.2726
B 0.0001 0.1037 0.0062
v 0.0001 0.0001 0.5784
Table 3: Parameter estimation of ARIMA model
Non-seasonal ARIMA for Data 1
Parameter Estimate Standard error p-value
Intercept 159.6526 23.8932 <.0001
o1 0.9894 0.0148 <.0001
01 —-0.6061 0.1028 <.0001
Non-seasonal ARIMA for Data 2
Parameter Estimate Standard error p-value
o1 —0.6067 0.1358 <.0001
01 0.9633 0.0700 <.0001
drift 83000.72 209296.48 0.6917
Non-seasonal ARIMA for Data 3
Parameter Estimate Standard error p-value
&1 0.7452 0.0449 <.0001
[ —0.3394 0.0431 <.0001
01 —1.8855 0.0241 <.0001
(3 0.8893 0.0239 <.0001
SARIMA for Data 1
Parameter Estimate Standard error p-value
01 —0.8689 0.0977 <.0001
0 0.6416 0.1605 <.0001
drift 1.2021 0.2173 <.0001
SARIMA for Data 2
Parameter Estimate Standard error p-value
01 0.3581 0.1900 0.0594
(G -0.6787 0.3842 0.0773
drift 132303.7 7205.195 <.0001
SARIMA for Data 3
Parameter Estimate Standard error p-value
o1 —0.0457 0.0540 0.3973
o1 0.7825 0.0430 <.0001
01 —-0.3076 0.0756 <.0001
(3 —-0.9607 0.0151 <.0001
03 0.3195 0.0663 <.0001
0 —-0.4238 0.0442 <.0001

Where 7 is the number of the data, F; is the predicted value at time ¢. In this paper, we use the
MAPE (mean absolute percentage error) to evaluate forecast performance among models traditionally
applied to measure forecasting accuracy electricity demand. It is easy to be interpreted as the measure
to compare the forecasting accuracy since the MAPE captures the differences between the forecast
error and the real values. We defined the equation of MAPE as follows. Tables 4, 5, 6 shows the
forecasting value for 3 dataset by each models. Table 7 are the results of MAPE for each of dataset.
We know that e-SVR outperforms than other models when the training set period is short-term. The
performance results performance in Korea and Northeast China are almost same when we use the
same period of the training set; in addition, the performance of seasonal ARIMA model is improved
when the training period is long-term.
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Table 4: Compare 4 model for Data 1

Time Original €SVR Linear Holt- ARIMA SARIMA
regression Winters
2008/10 181.07 173.93 191.90 190.32 18931 19478
2008/11 180.56 181.01 200.91 200.53 189.00 199.23
2008/12 189.03 185.83 212.35 214.36 188.69 202.82
2009/01 182.07 192.12 208.58 208.95 188.38 203.41
2009/02 167.35 169.06 187.15 180.40 188.07 196.65
2009/03 189.30 189.93 202.99 200.80 187.77 201.17
2009/04 175.84 177.33 199.24 195.25 187.47 201.41
Table 5: Compare 4 models for Data 2
Time Original e-SVR Linear Holt ARIMA SARIMA
regression Winters
2008/10 30403363 29919215 30562941 29615225 30688266 30257564
2008/11 30863876 30684207 32448355 31551030 30439605 32507955
2008/12 32670358 32769385 34615515 33865652 30097313 34671953
2009/01 34349683 34044781 35835468 35204958 29901663 36068707
2009/02 33306296 33519572 34704041 33739110 29701588 34887317
2009/03 32615254 32854583 34154025 32959241 29565050 34225113
2009/04 32478163 30740669 33516965 32105364 29442530 33493561
Table 6: Compare 4 models for Data 3
Time Original e-SVR Linear Holi- ARIMA SARIMA
regression Winters
2008710 30403363 27825347 24621948 30004024 31455923 30001874
2008/11 30863876 30050942 24993843 32185875 32203795 32087537
2008/12 32670358 32471323 25343644 34628975 32793750 34459612
2009/01 34349683 34190264 25736127 36169171 33055888 35909645
2009/02 33306296 33249388 25317923 34834388 33124373 34794484
2009/03 32615254 32206817 25431795 33806665 33158066 33985596
2009/04 32478163 30422399 25396204 32755678 33231250 33090748
Table 7: MAPE of the models (%)
Dataset e-SVR Linear Holt- ARIMA SARIMA
regression Winters
I 1.9437 10.9315 9.8911 4.6682 10.7503
2 1.4413 40073 2.0670 75226 4.2495
3 2.8485 21.9070 37120 23538 3.6942

4. Conclusion

We compared the performance of the models for forecasting electricity demand. Of the models, the
seasonal ARIMA and e-SVR approaches have been widely applied. The results show that the SVR
with a Gaussian RBF kernel outperforms the rest of the models in all data sets. In addition, the Korea
data shows more seasonal patterns and trends than the China data. Therefore, time series models with
trend and seasonal components are outperformed in the case of Korea versus China.

In this study, only the historical electricity demand are used into consideration to forecast electric-
ity demand. Exogenous variables such as average of temperature, illuminance, humidity, and CPI are
important factors to improve forecasting accuracy. Researchers should include more extensive com-
parison with different type of kernel functions employing to advance the performance of the e-SVR
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model and compare models at various types of data pattern. Other topics that employ more exten-
sive comparison with different type of kernel functions should advance the performance of the e-SVR
model, comparing the methods at various types of data pattern. More work is required in the research
field of smart grid and management for energy demand.

References

Aizerman, A., Braverman, E. M. and Rozoner, L. 1. (1964). Theoretical foundations of the potential
function method in pattern recognition learning, Automation and Remote Control, 25, 821-837.

Box, G. E. P. and Jenkins, G. M. (1970). Time series analysis, Forecasting and Control, Holden-Day,
Oakland, CA.

Claveria, O., Monte, E. and Torra, S. (2015). Regional Forecasting with Support Vector Regressions:
The Case of Spain, University of Barcelona, Regional Quantitative Analysis Group.

Fletcher, R. (1987). Practical Methods of Optimization, Wiley, New York, 1, 784-794.

Karin, K. (2011). Forecasting electricity demand in Thailand with and artificial neural network ap-
proach, Journal of Energies, 4, 1246—1257.

Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential
smoothing, Journal of the Operational Research Society, 54, 799-805.

Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting, European
Journal of Operational Research, 204, 139-152.

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer, New York.

Wang, J., Zhu, W., Zhang, W. and Sun, D. (2009). A trend fixed on firstly and seasonal adjustment
model combined with the e-SVR for short-term forecasting of electricity demand, Energy Policy,
37, 4901-49009.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages, Management
Science, 6, 324-342.

Yoon, S. H., Lee, Y. S. and Park, J. S. (2009). Statistical modeling for forecasting maximum electricity
demand in Korea, Communications for Statistical Applications and Method, 16, 127-135.

Received October 05, 2015; Revised November 11, 2015; Accepted November 16, 2015



